
QuiViz: Visualizing Physical Query Execution in a
Relational Big Data Management System

Umar Javed, Thierry Moreau, Dominik Moritz, Adriana Szekeres
Dept. of Computer Science, University of Washington

Seattle, Washington, USA
{ujaved, moreau, domoritz, aaasz}@cs.washington.edu

ABSTRACT
We propose QuiViz, a visualization tool that helps database
developers explore and understand query execution and data
movement in a distributed database management system.
QuiViz provides quick insight into common problems such
as data skew or performance bottleneck by leveraging visu-
alization techniques to present: (1) data flow between query
operators and between workers, (2) query execution and op-
erator dependencies, (3) cluster utilization, (4) network uti-
lization.

In particular, QuiViz is built to inspect query execution in
Myria [1], a distributed big data management system cur-
rently being developed in the UW CSE database group.
Myria aims towards building a distributed database platform
to provide big data management and analytics as a service
primarily for scientific applications. QuiViz was designed
to be easily ported to other DDBMS as well (e.g. Spark,
Hadoop).

1. INTRODUCTION
Database query performance is often unpredictable, espe-
cially when the database is distributed. This requires database
developers to spend significant amounts of time and effort
isolating and debugging the root cause of performance prob-
lems. These may include skewed data partitioning or run-
time issues, such as resource contention or adverse network
conditions.

Our goal is to build a visualization tool designed to help a
database developer understand the data flow and run-time
performance during query execution in a Distributed Database
Management System (DDBMS). Using our tool, the database
developer could quickly discover run-time bottlenecks as well
as problematic data skew issues, saving them significant guess-
work and programming effort to identify the appropriate logs
to analyze. Our visualization tool, QuiViz, uses profiling
logs from Myria [1] as the prototype DDBMS. Myria is a
distributed database platform that provides big data man-
agement and analytics as a service primarily for scientific
applications. Myria takes queries in high-level query lan-
guages, such as SQL, translating them into physical query
plans and finally executing them in parallel. A query plan is
an ordered set of steps used to access data in database man-
agement systems. Myria breaks down each query plan into
fragments. A fragment is composed of multiple sequential
database operators running on one worker. Fragments map
down to a unit of work that can be scheduled and parallelized

across a cluster.

Currently, Myria does not offer a detailed visualization front-
end designed to provide insight into job execution and net-
work communication between distributed workers. QuiViz
is designed to help the Myria developers write better opti-
mized queries by addressing the following questions.

• How does the data flow through the system between oper-
ators? The overall data flow in a DDBMS is represented
by a Physical Query Plan. It is important for the developer
to understand the Physical Query Plan in order to optimize
it. To aid in this understanding, we provide an interactive
visualization of the Physical Query Plan in QuiViz.

• How does the cluster visualization vary for each fragment
and operator? In Myria, a fragment is composed of mul-
tiple sequential database operators running on the same
worker. A programmer will want to understand the clus-
ter utilization at a given time as well as how much time
is being spent executing an operator. QuiViz provides a
Fragment Execution view to aid this understanding. The
Fragment Execution view visualizes the utilization of the
cluster by showing what operator in the fragment each
worker is busy working on.

• How is the input data partitioned? Data skew is an im-
portant problem in a DDBMS, which can result in un-
even communication between worker threads residing on
different machines. QuiViz provides a view for Worker
Communication that all-to-all communication between two
fragments in the Physical Query Plan.

We show in the next sections how QuiViz addresses these
questions by the means of effective data visualization.

2. RELATED WORK
Performance visualization tools for distributed systems are
not a new idea.

Ambrose[11] is a platform developed by Twitter to visual-
ize and real-time monitor MapReduce data workflows. Am-
brose offers three different views to show associated jobs,
job dependencies and progress, which are not suitable for
our needs as the abstraction level of jobs is too high and
does not capture single operators.

Google’s Dapper[8] is a distributed systems tracing infras-
tructure that offers fine-grained tracing of calls in Google’s

1

distributed systems. They also proposed an interface for vi-
sualizing traces. Similarly, X-trace[5] was developed as a
framework to trace which events cause what other events in
a distributed environment. Recently, there has been work on
visualizing event traces collected in X-trace1. Due to the im-
portance of these kinds of debug facilities, Twitter closely
modeled Zipkin[10] after Dapper and X-trace and released
it as open source.

Dapper and X-trace focus on how data flows through a dis-
tributed system. In contrast, in QuiViz the visualization fo-
cuses on the operators and how the data flows through them.
This orthogonal view is better suited for debugging perfor-
mance bottlenecks in DDBMSs and also scales to a larger
number of events. Furthermore, QuiViz offers different ab-
straction levels, which enables users to find problems faster
and handle larger amounts of profiling data. Also, QuiViz
is specifically designed to help developers understand query
execution in distributed database system as opposed to gen-
eral traces in distributed systems.

Tools to visualize query plans, for example those used to
improve the performance for the SDSS Sky survey[9], focus
on optimizing queries and not query execution and have no
visualization of data flow, which is necessary to optimize
physical query execution.

3. APPROACH
The first step in designing QuiViz was to identify the possi-
ble causes that affect the performance of a query execution.
After we identified several such causes, we explored visu-
alization techniques we found adequate in exposing those
performance bottlenecks.

We found that the performance of a query might be affected
by the following factors, which greatly influenced the design
of our visualization tool:

• Wrong/unoptimized physical query plan. We manually
analyzed several physical query plans and discovered that
some queries were poorly optimized. This led us to design
a view that allows interactive exploration of the physical
query plan (mapped to a graph of query operators).

• Stragglers, tail latency, expensive query operators, poor
scheduling. We target distributed database management
systems. Therefore, as the query gets executed in a dis-
tributed environment, the query coordinator has to wait
until all the workers finish executing their assigned tasks.
To give insight into how the tasks are distributed and ex-
ecuted on each worker, we provide a view that exposes
utilization details at the cluster and worker levels.

• Poor data partitioning, data skew. Network traffic can
cause serious delay when executing a distributed query.
Due to poor data partitioning, workers might need to send
large amounts of data to one another. We designed a view
that allows the developer to analyze the data traffic gener-
ated while executing the query.

1https://github.com/brownsys/X-Trace/tree/
master/src/webui/html/interactive

3.1 System Overview
QuiViz’s architecture (Figure 1) is composed of: (1) a back-
end used as a plug-in interface to the targeted distributed
database system, and (2) a platform-independent front-end
that produces performance visualizations what we describe
in Section 3.3. The front-end and back-end of QuiViz are
highly decoupled so that the visualization can be used not
only with Myria but also with other systems such as Spark
or Hadoop. In Section 3.2 we illustrate how we implemented
log collections and aggregation in Myria.

3.2 Back-end
The role of QuiViz’s back-end is to produce event logs that
include: when operators are called, when the call returns and
when data is sent between workers. These logs are then used
to create the visualizations in QuiViz’s web UI as described
in Section 3.3.

We explored two approaches for collecting event logs. The
simplest approach was to write the logs on files directly to
disk. The files would then get hauled back to one master
node using remote copy where they would then get parsed,
manipulated to the desired format.

We switched to a more scalable data collection approach de-
scribed in Figure 1 where logs get written directly into the
local worker’s database as tuples in a relation. When the
front-end client requests data, the master executes a query
that gathers the log data from the dirstributed workers, and
streams the results directly to the requesting client. We found
this data collection approach to be more scalable, reliable
and faster than the simpler file-based logging approach. More
particularly, using a database to manage performance logs
allowed us to write queries to aggregate, filter and transform
the collected data.

For example, to produce the visualization described in Sec-
tion 3.3.2, we had to query how many workers are working
on a certain fragment at a given time. To do this, we used
a query to select events in the root operators (i.e. parentless
operator) of each fragment and used a custom map function
to carry state. The state is an integer that is incremented
when the operator is called on a worker and decremented
when the operator returns.

3.3 Front-end
The Myria web front-end server is written in Python and runs
on Google App Engine2. QuiViz’s user-interface (UI) is em-
bedded into Myria’s web front-end. We build QuiViz’s UI
using D3[3] to deliver an interactive visualization experience
to the user. D3 is a JavaScript framework for data visualiza-
tion on the web.

QuiViz’s web UI is divided into two components: (1) the
browser panel which provides a visualization of the Physical
Query Plan, and (2) the performance panel which provides
some insight into an element selected in the browser view.
The browser panel contains a view of the Physical Query

2https://developers.google.com/appengine/

2

https://github.com/brownsys/X-Trace/tree/master/src/webui/html/interactive
https://github.com/brownsys/X-Trace/tree/master/src/webui/html/interactive
https://developers.google.com/appengine/

Coordinator

REST Server

Catalog

JSON rest interface

Myria execution

Query Optimizor

Web UI

Master

Frontend

Shared-
nothing
cluster

Viz. Web UI

Viz. REST Server

Our Viz. System

Worker catalog

RDBMS

Worker catalog Worker catalog

......

Myria

logs RDBMS logs RDBMS logs

Figure 1: Overview of the log collection and transformation
architecture. Raw event logs are collected on each worker.
The data is stored in relations. To download the data, a query
has to be executed.

Plan, rendered as a graph. The user can navigate the Physi-
cal Query Plan by expanding query fragments into the opera-
tors that compose it. The user can chose to select a fragment
of interest which will render a Fragment Execution visual-
ization of the selected fragment in the performance panel.
Alternatively, the user can select an fragment-to-fragment
edge in the Physical Query Plan thus rendering a Worker
Communication visualization of the selected edge in the per-
formance panel. If no elements are selected in the Physi-
cal Query Plan view, an Fragment Overview visualization is
rendered in the performance panel, displaying the aggregate
worker utilization over time for each fragment.

The following subsections describe each one of the four views
offered by QuiViz’s web UI.

3.3.1 Physical query plan view

(a) Large query plan collapsed.
(b) Expanding Fragment 2 reveals its
operators.

Figure 2: The Physical Query Plan view is used by QuiViz
to help the user browse performance visualizations.

The Physical Query Plan view as pictured in Figure 2 allows
the user to selectively browse different performance visual-
izations for a given query. The physical query plan is repre-
sented by a graph where each node represents a query frag-
ment, and each link represents inter-worker communication

between the execution of two query fragments. Each query
fragment is composed by a collection of query operators that
can be executed together as one job.

The user can perform three classes of actions on the Physical
Query Plan view that will render a new visualization in the
performance panel:

• Empty selection: by default if no fragments or edges
are selected in the Physical Query Plan view, an Frag-
ment Overview visualization is rendered in the perfor-
mance panel. This visualization displays the aggregate
worker utilization over time for each fragment and pro-
vides cluster utilization data at a glance.

• Fragment selection: when selecting a fragment, a Frag-
ment Execution visualization gets rendered in the perfor-
mance panel. The Fragment Execution visualization pro-
vides aggregate cluster utilization information complemented
by per-worker task schedules. When a fragment is se-
lected, the operands inside of the fragment in the Physical
Query Plan view are color-coded to allow the user to eas-
ily match each task in the per-worker task schedule in the
performance window with the corresponding query oper-
ator in the browser window.

• Edge selection: upon selecting one or more fragment-
to-fragment edges, a Worker Communication visualiza-
tion gets displayed, providing information on inter-worker
communication transitioning from one query fragment to
the next.

Graph Rendering: We use D3 [3] to render the Physical
Query Plan graph, which allows us to support various inter-
actions and transitions. We use GraphViz [4] in the backend
to generate graph layout data. GraphViz generates graph
layouts that are optimized to minimize area footprint. The
layout information is then fed into a D3-based rendering
engine which supports various interactions and animations
techniques.

Graph Navigation: A query plan can be arbitrarily large.
Thus we offer two mechanisms that facilitate exploration of
the graph for the user: (1) expanding/reducing fragments and
(2) paning. The first mechanism can reduce the size of a
graph by a constant factor by collapsing operators that com-
pose a fragment into a single fragment node. The user can
click once on a collapsed fragment to expand it, and click
once on an expanded fragment to collapse it. Expanding or
reducing a node can cause large changes in the graph layout
as GraphViz changes the graph layout to minimize overall
area. This graph re-shuffling is illustrated in Figure ?? where
expanding Fragment 2 causes the layout to change. To ad-
dress these layout changes, we implemented transitions to
allow the user to track the fragments as those get reshuf-
fled. The second mechanism that facilitates exploration of
the graph for the user is paning. This feature was imple-
mented in D3 and allows the user to navigate a graph when
it doesn’t fit inside of the browser panel.

3.3.2 Fragment execution view

3

The Fragment Execution view comprises two charts: the uti-
lization chart and the operators chart. The utilization chart
(Figure 3) shows how many workers a fragment is running
on over time. The chart is used to quickly reveal any patterns
in the schedule, like tail latency, long periods of idleness,
etc. We implemented focus+context[6] using a small brush
(at the top of the figure) that allows the user to zoom-in and
further analyze a problematic area without loosing context
on the entire execution.

Figure 3: The utilization chart. The user can brush on either
the small graph on top or the bottom graph to zoom into a
region of interest.

The utilization chart also implements a brush that allows the
user to further analyze query execution by displaying the
work schedule of each worker in the operators chart (Fig-
ure 4). The per-worker schedule displays what operators
each worker is executing over time.

Figure 4: The operators chart.

3.3.3 Overview over all fragments
The Fragment Overview shows small multiples of the uti-
lization chart described in the previous section. In addition
to identifying execution skew, the user can compare the frag-
ments and find correlations between the execution of differ-
ent fragments. This view helps the user navigate between
fragments and is not intended to offer deep insight into per-
formance issues. Section 4.1 describes a usecase for the
Fragment Overview visualization.

3.3.4 Worker Communication view
The Worker Communication view consists of two charts: the
aggregate communication chart and the time series chart.
The aggregate communication chart is a matrix (Figure 9)
representing a cluster of N workers. Each cell m,n in the

matrix represents the total number of tuples sent by worker
m to worker n during the query execution. We chose to use
the colors from color brewer[7] and interpolated the colors
between the steps using the CIE L*a*b* interpolation and
lightness correction [2]. The colors work in grayscale and
can be interpreted by color-blind users.

The matrix chart representing aggregate communication be-
tween workers help uncover data skew issues, as discussed
in Section 4.

We initially considered having a chord diagram3 instead of a
matrix for the Worker Communication chart. But feedback
from our peers convinced us that a chord diagram would suf-
fer from scalability problems. Adding an option for display-
ing a chord diagram remains part of future work.

Figure 5: Worker Communication matrix chart. Each cell
represents the number of exchanged tuples between a pair of
workers.

When the user clicks on a matrix cell, she is able to view the
breakdown of the worker pair communication in a time se-
ries chart below the matrix. The user can select multiple such
cells to compare different time series. Figure 6 shows an ex-
ample when the user selected two pairs: (8-1) and (7-5). The
x-axis shows time in seconds and y-axis shows number of
tuples exchanged between the source and destination work-
ers. Just looking at the matrix chart it is evident that there
is more data exchanged between the source-destination pair
(8-2) than the pair (7-6). But as the time series comparison
shows, there is more communication between (7-5) than (8-
1) for the last 2.5 seconds of the query execution. This points
to interesting patterns as to the rate at which work is done at
different workers at different stages of the execution. Dis-
tinct points on the lines are highlighted as black dots. Hov-
ering the cursor over a dot shows the information for that
data point in a tooltip. Meanwhile the cells in the matrix re-
main highlighted using the same color used to draw the cor-
responding time series line. This helps the user keep track of
the mapping between the matrix cell and the corresponding
time series line. We also provide a ’clear selection’ button
that erases everything from the time series chart upon click-
ing. Finally we provide the functionality whereby clicking a
row or column label selects every cell in that row or column
and displays the corresponding time series in the time series
3http://bl.ocks.org/mbostock/4062006

4

http://bl.ocks.org/mbostock/4062006

chart.

Figure 6: Worker Communication time series chart. The
user can select multiple cells in the matrix to compare the
corresponding time series.

4. EVALUATION
We used QuiViz to examine real world database queries that
ran on Myria. We base our analysis on the different visual-
izations that were generated by QuiViz and present examples
where the QuiViz helped us better identify (1) data skew, (2)
execution skew, (3) performance bottlenecks.

We explore a simple join query we performed on one million
tuples sampled from a Twitter user graph. This query joins
Twitter followers and followees by user ID. The query can
be written in SQL as:

SELECT ∗
FROM t w i t t e r S , t w i t t e r R
WHERE S . f o l l o w e r = R . f o l l o w e e

Figure 7: This view shows the Physical Query Plan for a
join.

The resulting Physical Query Plan visualization is displayed
in Figure 7. The user will navigate the Physical Query Plan
visualization in the browser panel in the next case studies to
identify different performance issues.

4.1 Case 1: Identifying Performance Bottlenecks using
the Fragment Overview

The Fragment Overview view provides the user with a sum-
mary of the execution of all fragments on all workers as de-
scribed in Section 3.3.2. In Figure 8 the user can see for
instance that Fragment 2 is irregularly executed on multiple
workers. If the graph is not one solid block as it in Fragment
1, 3 and 4, one can assume workers are sleeping. Having
workers sleep can be caused by one of two reasons: (1) the
workers don’t have enough data available to work on (i.e.
data dependency problem) or (2) the destination worker’s
input buffers are full thus forcing the source workers to stall
(i.e. back-pressure problem).

Figure 8: This Fragment Overview shows very irregular us-
age in fragment 2.

4.2 Case 2: Identifying Data Skew using the Worker
Communication View

(a) Data skew. (b) No data skew.

Figure 9: The network view shows a distinctive pattern when
there is data skew. Figure 9a shows that most tuples are sent
to worker 1 and 5 (origin: row, destination: column).

The Worker Communication visualization at a glance shows
how much data was sent between workers by one query frag-
ment to the next. The two Worker Communication views in
Figure 9 were obtained by selecting the Fragment0→Fragment2

5

and Fragment1→Fragment2 edges respectively in the Phys-
ical Query Plan view. Figure 9 displays aggregate data com-
munication between workers. In Figure 9b, the amount of
data sent from each worker to every other worker is balanced
as opposed to Figure 9a where one can see that the volume
of data sent to worker 1 and worker 5 dwarfs data sent to the
other workers in the system. This apparent data skew could
be caused by poor partitioning.

4.3 Case 3: Identifying Execution Skew using the Frag-
ment Execution View

Figure 10: This Fragment Execution view shows heavy exe-
cution skew on worker 5.

The Fragment Execution visualization allows the user to dive
down into query execution details at the worker level. The
Fragment Execution view in Figure 10 was obtained by se-
lecting Fragment2 in the Physical Query Plan view. Frag-
ment2 is the fragment that performs the join. The user can
observe at a glance that certain workers produce much more
data as a result of the join execution. Particularly, we saw in
Case 2 Figure 9a, that tuples sent to Fragment2 from Frag-
ment1 were heavily skewed towards being sent to worker 1
and worker 5. In Figure 10, the user can now see that as
a result of the join, worker 5 ends up producing most tu-
ples that have to be written back to disk. The color scheme
used for each worker schedules in the Fragment Execution
view is color-coded to match the operators in Figure 7. Con-
sequently, one can quickly observe in the Fragment Execu-
tion view that worker 5 is busy sending join results from
t = 2.5s to t = 5.0s, which differs from the rest of the work-
ers. Using similar reasoning, one can conclude that worker
5 presents a performance bottleneck in the execution of the
query on Myria. In the short term, the user can modify the
way the input data set gets partitioned. Alternatively the user
could change the number of workers allocated for the job. In
the long term, developers should look at ways to improve
data flow to minimize idling on workers that are waiting on
input data.

4.4 Discussion
All in all, QuiViz allows the user to get much more insight
into query execution than what was available before, i.e.

text-based performance logs, and runtimes data. Being able
to navigate performance data using a simple visual interface
can indeed facilitate the task of a developer who is design-
ing Myria’s back end, or a Myria user who is writing com-
plex queries to process large amounts of data. That said,
QuiViz can only help the user visualize query execution per-
formance. QuiViz but won’t necessarily point the user to
what needs to be done to improve query performance. We
believe that an experienced user will quickly learn how to
identify symptomatic performance execution, and know what
steps to take to improve performance as a result. We would
have to back this up with a user-study, which could be the
object of future work in this direction.

5. CONCLUSION
This paper introduced QuiViz, a visualization tool carefully
tailored to help database developers and users to quickly
identify common distributed databases performance bottle-
necks, such as stragglers, data skew, etc. Our tool has been
successfully integrated with the Myria distributed database
management system, and has already been used to identify
several bugs, such as poor physical query plan optimization,
stragglers, poor data partitioning etc. This has led us to be-
lieve that the visualization techniques we employed are ef-
fective in helping the user quickly narrow down and iden-
tify the cause of the performance bottleneck. QuiViz could
be easily integrated with another distributed database sys-
tem, the only requirement being a specific log data format.
We explained how we collect logs in Myria and recommend
our approach to developers that are porting QuiViz to a new
DDBMS.

6. FUTURE WORK
The current implementation focuses on scalability. We man-
aged to some extent to address some scalability issues raised
by big query plans, large amount of workers or long running
queries. For example the Worker Communication view uses
a scalable heatmap to show the communication between all
the workers in the system. However, other techniques have
to be further implemented to address this issue. One exam-
ple would be a more interactive query plan graph, which the
users can zoom into. Also, by querying the performance log
data on the backend, the Fragment Execution view should
only download and render what the user can see.

Besides performance improvements, we plan to integrate X-
trace and its visualization to offer the orthogonal view that
allows users to trace how tuple batches flow through the op-
erators and between operators. Combined with the visualiza-
tions described in this paper, it will form a powerful debug-
ging tool that will help users better understand and improve
query execution.

7. REFERENCES
1. Myria. http://myria.cs.washington.edu.

2. G. Aisch. Mastering multi-hued color scales with
chroma.js, 9 2013.
https://vis4.net/blog/posts/
mastering-multi-hued-color-scales/.

6

http://myria.cs.washington.edu
https://vis4.net/blog/posts/mastering-multi-hued-color-scales/
https://vis4.net/blog/posts/mastering-multi-hued-color-scales/

3. M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 2011.

4. J. Ellson, E. Gansner, L. Koutsofios, S. North,
G. Woodhull, S. Description, and L. Technologies.
Graphviz open source graph drawing tools. In Lecture
Notes in Computer Science, pages 483–484.
Springer-Verlag, 2001.

5. R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-trace: A pervasive network tracing
framework. In Proceedings of the 4th USENIX
conference on Networked systems design &
implementation, pages 20–20. USENIX Association,
2007.

6. G. W. Furnas. Generalized fisheye views, volume 17.
ACM, 1986.

7. M. Harrower and C. A. Brewer. Colorbrewer. org: An
online tool for selecting colour schemes for maps. The
Cartographic Journal, 40(1):27–37, 2003.

8. B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed systems
tracing infrastructure. Technical report, Google, Inc.,
2010.

9. A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt,
T. Malik, J. Raddick, C. Stoughton, and J. vandenBerg.
The sdss skyserver: public access to the sloan digital
sky server data. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of
data, pages 570–581. ACM, 2002.

10. Twitter. Zipkin, 2012.
http://twitter.github.io/zipkin/.

11. Twitter. Ambrose, 2013.
http://github.com/twitter/ambrose/.

7

http://twitter.github.io/zipkin/
http://github.com/twitter/ambrose/

	1 Introduction
	2 Related Work
	3 Approach
	3.1 System Overview
	3.2 Back-end
	3.3 Front-end
	3.3.1 Physical query plan view
	3.3.2 Fragment execution view
	3.3.3 Overview over all fragments
	3.3.4 Worker Communication view

	4 Evaluation
	4.1 Case 1: Identifying Performance Bottlenecks using the Fragment Overview
	4.2 Case 2: Identifying Data Skew using the Worker Communication View
	4.3 Case 3: Identifying Execution Skew using the Fragment Execution View
	4.4 Discussion

	5 Conclusion
	6 Future Work
	7 REFERENCES

