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ABSTRACT 
In this project we create a visualization tool for analyzing 
machine learning classification algorithms. The key idea 
behind this tool is to provide the user with per-iteration 
performance information for the algorithm. This is done 
through two main views. The first view contains a 
scatterplot matrix of the data projected into multiple 
dimension pairs. Each point is labeled with its actual and 
predicted labels to highlight where in the dataset errors 
occur at each dimension. The second view provides 
summary statistics (classification accuracy, number of 
errors, etc.) at each iteration and an interface to scroll 
through every iteration of the algorithm. Both of these 
views are updated in real-time as the algorithm as running. 
As a test of the system, the provided implementation 
visualizes running a linear SVM algorithm on a breast 
cancer survival dataset with about 200 points and 3 
dimensions. The implementation is easily extendable  to 
other algorithms and datasets.  
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INTRODUCTION 
One of the key challenges in machine learning is that it can 
be very difficult to track the performance of an algorithm 
over time. Most machine learning packages provide good 
interfaces to import and apply a variety of classification 
algorithms to a dataset. However the user is only able to see 
the finished result of the classifier, usually consisting of a 
decision boundary and some performance statistics. What is 
missing here is any indication of how the chosen algorithm 
actually performed the classification. We aim to bridge that 
gap by creating a tool that helps the user visualize what 
happens on every iteration of the classification process. 

This tool will provide performance metrics for each 
iteration of an algorithm and allow the user to inspect how 
each point in their dataset is classified. With this scheme, 
the user gets both a global and local overview of the 
visualization process at each iteration of the algorithm. 

We believe that this tool will be useful in many ways. At 
the most basic level, it can be used as a technique to learn 
how the chosen algorithm works. Oftentimes it can be 
challenging to choose which classifier to pick for a specific 
problem. It is also very bewildering when an algorithm that 
has great performance on one dataset has much worse 
performance in a different domain. Being able to examine 
the step-by-step execution of the classifier can lead to a 
deeper understanding of how the classifier actually works 
and why it performs the way it does on the different 
problems. On a similar note, this visualization can also be 
used as a teaching tool to help explain a new algorithm to a 
colleague. 

Another common use case we envision is an analysis of the 
results by a domain expert. Given the fact that our 
visualization allows the user to inspect the classification 
performance of each data point, a domain expert will be 
able to glean some insight as to what anomalies in the data 
are causing mis-classifications. Many classification 
algorithms also require the user to set parameters which 
may determine the performance of the algorithm. By seeing 
which points are being commonly mis-classified, the user 
can alter the parameters to try and improve the 
classification accuracy of those specific points. One key 
part of our tool is that this algorithm analysis happens in a 
streaming fashion, while the algorithm is actually running. 
This will allow the user to gauge if their algorithm’s 
performance is improving before the algorithm has 
terminated. If the algorithm is clearly performing worse 
with the newest set of parameters, the user can terminate 
the execution of that algorithm and try new parameters. 
This should greatly reduce the time required to iterate 
through multiple classifiers/classifier parameters. 

RELATED WORK 
There already exists several systems intended to make the 
task of machine learning easier. One such system is called 
Weka [1,2]. Weka supports a wide variety of algorithms 
that can be applied to different datasets. The GUI allows for 
exploration of the initial dataset and also some visualization 
of the final classifier result. Weka is especially good for 
visualizing tree and graph structures for the resulting 
classifier. Aside from Weka, there are other systems that 
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focus on visualizing the performance of a classifier. A 
program called EnsembleMatrix [3] considers the problem 
of comparing multiple classifiers. EnsembleMatrix draws a 
confusion matrix for each classifier trained on a dataset and 
allows interaction between each of the confusion matrices. 
This allows the user to see which classifiers worked better 
on which part of the data. Finally, there are several systems 
for visualizing the actual decision boundary of a classifier 
[4, 5]. The decision boundary is visualized in the intuitive 
manner - by plotting all of the points on a 2D scatterplot 
and then plotting the decision boundary between them. 
Given the fact that the dataset may have very high 
dimensionality, these systems allow the user to select which 
dimensions are shown for the scatterplot. 

METHODS 
Our visualization provides a view into the performance of 
the classifier at any given iteration during its training phase. 
We plot the data on a coordinate space defined by two 
feature dimensions, which the user can select. Each data 
point is colored with its predicted class, and a compound 
color scheme is used to differentiate between correct and 
incorrect classifications for each class. Our visualization 
currently only supports binary classification but easily 
generalizes to multi-class classification. The plot is 
replicated with different dimensions to form a scatter plot 
matrix that allows the user to compare classification 
performance across different dimensions, since real world 
data sets typically have high dimensionality and are not 
easily separable between any two particular dimensions. 
For example, for a 3D dataset, the hyperplane that best 
separates the two classes may not be orthogonal to a 
particular axis.  

Below the scatterplot matrix, we show a plot of different 
metrics over time, which is measured in terms of iterations. 
The different metrics include the number of errors, the 
change in errors between iterations, and the training, 
validation, and test set accuracies. These metrics help 
inform the user about how the classifier is behaving over 
time and give the user insight into how the algorithm works 
or point out room for improvement in feature selection. For 
example, the user may notice that none of the plots show a 
good separation between classes, which suggests that the 
features need to be reworked, rather than the algorithm 
being at fault. The support for showing training, validation, 
and test set accuracies is helpful for putting our 
visualization within a typical model selection and training 
workflow, which generally involves training over a subset 
of the overall data, using a different subset to select 
hyperparameters and model parameters, and using the 
trained classifier on yet another subset to check its 
performance on data it has not seen before. We believe that 
these metrics are also very applicable to the pedagogical 
setting, to open the black box that is model training and 
show students important insights such as the bias-variance 
trade-off, training vs. test set performance, and the 
execution of specific training algorithms, such as sequential 

minimal optimization for support vector machines,  along 
with the resulting changes in classification.  

To implement our visualization, we use D3.js and structure 
the work as a web-based visualization. We chose D3.js over 
graphics libraries such as Matplotlib for Python and ggplot2 
for R since it allowed us to exercise more control over the 
layout and visual presentation as well as enable 
interactivity, which is not possible with those libraries. 
Using the web also makes it easier to share the visualization 
with others and turn the visualization into a dashboard for 
display on external monitors. It also enforces a separation 
between the algorithm and the visualization, which can be 
useful for enabling communication over the internet 
between the machines that train the classifiers and the 
machine that hosts the visualization. Use cases include 
training a classifier on a cluster of machines running 
Hadoop and sending the results for each iteration back to 
the visualization.  

We chose to use a support vector machine binary classifier 
for this visualization. Rather than limiting ourselves to this 
one case, we use the support vector classifier as purely an 
example of a classifier that can be integrated with the 
visualization. For simplicity, the classifier uses a linear 
kernel. We note that the linear kernel is not much different 
from polynomial kernels, radial basis function kernels, and 
other high or infinite-dimensional kernels, since even for a 
linear kernel, the decision boundary may not be orthogonal 
to a dimension, and consequentially, under our class 
coloring method, the different kernels are treated 
equivalently. We use the scikit-learn library to run the 
support vector classification and provide the per-iteration 
data that we use for the visualization. Scikit-learn uses 
LIBSVM and LIBLINEAR to perform linear support vector 
classification. We chose the LIBSVM version, which uses 
the sequential minimal optimization algorithm to solve the 
dual form of the quadratic programming problem posed by 
the soft-margin support vector machine [6]. 

RESULTS 
Figure 1 shows the main screen of the visualization. The 
scatterplot matrix is on the top, and the number of errors is 
plotted on the bottom. The data used is the Haberman’s 
Survival dataset [7]. The scatterplot shows different 
features plotted against each other. It can be seen that the 
structure and distribution of the data vary quite a bit for 
each feature. Since the figure shows the state of the 
classifier after the last iteration, it is clear that the classifier 
ended up weighting the third feature very heavily and 
making the classification hyperplane orthogonal to the third 
dimension. If the user is curious about a particular 
misclassified data point, the user can place the mouse over 
a data point, which will trigger a pop-up containing 
information about the point. This is shown in figure 2, 
where a point in the plot between the second and first 
features is highlighted. 

 



 

 
Figure 1. The main screen, showing the scatterplot 

matrix for the last iteration and the number of errors 
per iteration on the lower chart. The prominent orange 

and blue marks are classification errors. 

 
Figure 2. The main screen, showing contextual 

information for a classification error under the cursor. 

 
Figure 3. The main screen, showing the scatterplot 

matrix for an iteration in which the number of errors 
sharply increased. The orange and blue marks are all 

classification errors. 

The plot of the number of errors shows that there are a few 
iterations in which the number of errors suddenly increased. 
The user can move the slider on the x-axis of the bottom 
chart to switch the scatterplot matrix to a different iteration, 

as shown in figure 3. The sudden increase in errors can 
easily be seen by the sudden increase in orange marks, 
which are classification errors.  

 
Figure 4. The main screen, with the training set 

accuracy plotted below. 

 

 
Figure 5. The main screen, with the test set accuracy 

plotted below. 

The user can view the overall classification accuracy on the 
training, validation, and test sets by selecting those metrics 
on the y-axis of the lower chart. Figure 4 shows the plot of 
the training set accuracy, and figure 5 shows the plot of the 
test set accuracy, with the test set replacing the training set 
in the scatterplot matrix. These sets need to be specified 
prior to running the visualization. The data points used in 
the scatterplot matrix are replotted to reflect whichever 
subset is chosen on the lower chart. Thus, the visualization 
allows the user to examine the performance of the classifier 
on the training, validation, and test sets easily. 

DISCUSSION 
We believe our main contribution lies in our work enabling 
streaming iteration data from the training classifier. This is 
important since most visualizations of this nature are 
performed after the training is completely done, which is a 
long time when the training is computationally expensive or 
slow. This applies to complex models, especially for those 



 

done on a distributed platform like Hadoop where the 
throughput is high but the latency is very high, and it often 
takes 24 hours to finish a job. Given our visualization’s 
streaming capabilities, the progress of the learner can be 
tracked while it’s still training, and the model can be 
iterated on much more quickly. 

FUTURE WORK        
  
Some useful extensions for the visualization are supporting 
other kernels for support vector machines, supporting other 
algorithms, and including more visual tools to help the 
machine learning practitioner make use of the visualization. 
Also, performance could be improved to help scale the 
visualization to larger datasets.  

Our current implementation only supports classifiers of the 
form y = Wx + b, since we utilize the W vector in the front 
end to classify the points in the visualization. Extending this 
to allow extra kernels would be very easy if we move the 
classification of points to the back end and send the 
classification of each point to the front end. This is also a 
valid strategy for allowing more supervised classifiers to be 
plotted, such as K-nearest neighbors or neural networks. 
Extending the binary classification setting to multiclass is 
also as easy as defining more classes and extending the 
color scheme.  

More tools that we could see being useful to machine 
learning practitioners using our visualization include a 
confusion matrix as well as information about the saliency 
of different dimensions. A confusion matrix would give a 
useful, easily understandable numerical summary of the 
information that is already plotted in the graph, which can 
be important since estimating the quantities from the 
scatterplots can be difficult due to the large amount of data 
and the the existence of occlusion. Information about the 
saliency of different dimensions would be useful since 
datasets with high dimensionality have the problem that the 
user must choose which features to plot and examine. This 
is preferred over plotting the data in terms of the basis 

vectors found from methods like principal component 
analysis (PCA), since those basis vectors lack the same kind 
of interpret-ability as the original features, and it’s not clear 
from the basis vectors where further improvements can be 
made.  

Lastly, performance for the visualization can be improved. 
The scatterplot matrix is particularly computer-intensive 
when re-rendering the data points, so further research into 
efficient ways to draw the points or only partially draw the 
points would result in a lot of gains. 
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