

Interaction Visualizations for Supervised Learning
Alex Bykov

University of Washington
abykov@uw.edu

Stanley Wang
University of Washington

snwang@cs.washington.edu

ABSTRACT
In this project we create a visualization tool for analyzing
machine learning classification algorithms. The key idea
behind this tool is to provide the user with per-iteration
performance information for the algorithm. This is done
through two main views. The first view contains a
scatterplot matrix of the data projected into multiple
dimension pairs. Each point is labeled with its actual and
predicted labels to highlight where in the dataset errors
occur at each dimension. The second view provides
summary statistics (classification accuracy, number of
errors, etc.) at each iteration and an interface to scroll
through every iteration of the algorithm. Both of these
views are updated in real-time as the algorithm as running.
As a test of the system, the provided implementation
visualizes running a linear SVM algorithm on a breast
cancer survival dataset with about 200 points and 3
dimensions. The implementation is easily extendable to
other algorithms and datasets.

Author Keywords
Guides, instructions, author’s kit, conference publications.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
One of the key challenges in machine learning is that it can
be very difficult to track the performance of an algorithm
over time. Most machine learning packages provide good
interfaces to import and apply a variety of classification
algorithms to a dataset. However the user is only able to see
the finished result of the classifier, usually consisting of a
decision boundary and some performance statistics. What is
missing here is any indication of how the chosen algorithm
actually performed the classification. We aim to bridge that
gap by creating a tool that helps the user visualize what
happens on every iteration of the classification process.

This tool will provide performance metrics for each
iteration of an algorithm and allow the user to inspect how
each point in their dataset is classified. With this scheme,
the user gets both a global and local overview of the
visualization process at each iteration of the algorithm.

We believe that this tool will be useful in many ways. At
the most basic level, it can be used as a technique to learn
how the chosen algorithm works. Oftentimes it can be
challenging to choose which classifier to pick for a specific
problem. It is also very bewildering when an algorithm that
has great performance on one dataset has much worse
performance in a different domain. Being able to examine
the step-by-step execution of the classifier can lead to a
deeper understanding of how the classifier actually works
and why it performs the way it does on the different
problems. On a similar note, this visualization can also be
used as a teaching tool to help explain a new algorithm to a
colleague.

Another common use case we envision is an analysis of the
results by a domain expert. Given the fact that our
visualization allows the user to inspect the classification
performance of each data point, a domain expert will be
able to glean some insight as to what anomalies in the data
are causing mis-classifications. Many classification
algorithms also require the user to set parameters which
may determine the performance of the algorithm. By seeing
which points are being commonly mis-classified, the user
can alter the parameters to try and improve the
classification accuracy of those specific points. One key
part of our tool is that this algorithm analysis happens in a
streaming fashion, while the algorithm is actually running.
This will allow the user to gauge if their algorithm’s
performance is improving before the algorithm has
terminated. If the algorithm is clearly performing worse
with the newest set of parameters, the user can terminate
the execution of that algorithm and try new parameters.
This should greatly reduce the time required to iterate
through multiple classifiers/classifier parameters.

RELATED WORK
There already exists several systems intended to make the
task of machine learning easier. One such system is called
Weka [1,2]. Weka supports a wide variety of algorithms
that can be applied to different datasets. The GUI allows for
exploration of the initial dataset and also some visualization
of the final classifier result. Weka is especially good for
visualizing tree and graph structures for the resulting
classifier. Aside from Weka, there are other systems that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

focus on visualizing the performance of a classifier. A
program called EnsembleMatrix [3] considers the problem
of comparing multiple classifiers. EnsembleMatrix draws a
confusion matrix for each classifier trained on a dataset and
allows interaction between each of the confusion matrices.
This allows the user to see which classifiers worked better
on which part of the data. Finally, there are several systems
for visualizing the actual decision boundary of a classifier
[4, 5]. The decision boundary is visualized in the intuitive
manner - by plotting all of the points on a 2D scatterplot
and then plotting the decision boundary between them.
Given the fact that the dataset may have very high
dimensionality, these systems allow the user to select which
dimensions are shown for the scatterplot.

METHODS
Our visualization provides a view into the performance of
the classifier at any given iteration during its training phase.
We plot the data on a coordinate space defined by two
feature dimensions, which the user can select. Each data
point is colored with its predicted class, and a compound
color scheme is used to differentiate between correct and
incorrect classifications for each class. Our visualization
currently only supports binary classification but easily
generalizes to multi-class classification. The plot is
replicated with different dimensions to form a scatter plot
matrix that allows the user to compare classification
performance across different dimensions, since real world
data sets typically have high dimensionality and are not
easily separable between any two particular dimensions.
For example, for a 3D dataset, the hyperplane that best
separates the two classes may not be orthogonal to a
particular axis.

Below the scatterplot matrix, we show a plot of different
metrics over time, which is measured in terms of iterations.
The different metrics include the number of errors, the
change in errors between iterations, and the training,
validation, and test set accuracies. These metrics help
inform the user about how the classifier is behaving over
time and give the user insight into how the algorithm works
or point out room for improvement in feature selection. For
example, the user may notice that none of the plots show a
good separation between classes, which suggests that the
features need to be reworked, rather than the algorithm
being at fault. The support for showing training, validation,
and test set accuracies is helpful for putting our
visualization within a typical model selection and training
workflow, which generally involves training over a subset
of the overall data, using a different subset to select
hyperparameters and model parameters, and using the
trained classifier on yet another subset to check its
performance on data it has not seen before. We believe that
these metrics are also very applicable to the pedagogical
setting, to open the black box that is model training and
show students important insights such as the bias-variance
trade-off, training vs. test set performance, and the
execution of specific training algorithms, such as sequential

minimal optimization for support vector machines, along
with the resulting changes in classification.

To implement our visualization, we use D3.js and structure
the work as a web-based visualization. We chose D3.js over
graphics libraries such as Matplotlib for Python and ggplot2
for R since it allowed us to exercise more control over the
layout and visual presentation as well as enable
interactivity, which is not possible with those libraries.
Using the web also makes it easier to share the visualization
with others and turn the visualization into a dashboard for
display on external monitors. It also enforces a separation
between the algorithm and the visualization, which can be
useful for enabling communication over the internet
between the machines that train the classifiers and the
machine that hosts the visualization. Use cases include
training a classifier on a cluster of machines running
Hadoop and sending the results for each iteration back to
the visualization.

We chose to use a support vector machine binary classifier
for this visualization. Rather than limiting ourselves to this
one case, we use the support vector classifier as purely an
example of a classifier that can be integrated with the
visualization. For simplicity, the classifier uses a linear
kernel. We note that the linear kernel is not much different
from polynomial kernels, radial basis function kernels, and
other high or infinite-dimensional kernels, since even for a
linear kernel, the decision boundary may not be orthogonal
to a dimension, and consequentially, under our class
coloring method, the different kernels are treated
equivalently. We use the scikit-learn library to run the
support vector classification and provide the per-iteration
data that we use for the visualization. Scikit-learn uses
LIBSVM and LIBLINEAR to perform linear support vector
classification. We chose the LIBSVM version, which uses
the sequential minimal optimization algorithm to solve the
dual form of the quadratic programming problem posed by
the soft-margin support vector machine [6].

RESULTS
Figure 1 shows the main screen of the visualization. The
scatterplot matrix is on the top, and the number of errors is
plotted on the bottom. The data used is the Haberman’s
Survival dataset [7]. The scatterplot shows different
features plotted against each other. It can be seen that the
structure and distribution of the data vary quite a bit for
each feature. Since the figure shows the state of the
classifier after the last iteration, it is clear that the classifier
ended up weighting the third feature very heavily and
making the classification hyperplane orthogonal to the third
dimension. If the user is curious about a particular
misclassified data point, the user can place the mouse over
a data point, which will trigger a pop-up containing
information about the point. This is shown in figure 2,
where a point in the plot between the second and first
features is highlighted.

Figure 1. The main screen, showing the scatterplot

matrix for the last iteration and the number of errors
per iteration on the lower chart. The prominent orange

and blue marks are classification errors.

Figure 2. The main screen, showing contextual

information for a classification error under the cursor.

Figure 3. The main screen, showing the scatterplot

matrix for an iteration in which the number of errors
sharply increased. The orange and blue marks are all

classification errors.

The plot of the number of errors shows that there are a few
iterations in which the number of errors suddenly increased.
The user can move the slider on the x-axis of the bottom
chart to switch the scatterplot matrix to a different iteration,

as shown in figure 3. The sudden increase in errors can
easily be seen by the sudden increase in orange marks,
which are classification errors.

Figure 4. The main screen, with the training set

accuracy plotted below.

Figure 5. The main screen, with the test set accuracy

plotted below.

The user can view the overall classification accuracy on the
training, validation, and test sets by selecting those metrics
on the y-axis of the lower chart. Figure 4 shows the plot of
the training set accuracy, and figure 5 shows the plot of the
test set accuracy, with the test set replacing the training set
in the scatterplot matrix. These sets need to be specified
prior to running the visualization. The data points used in
the scatterplot matrix are replotted to reflect whichever
subset is chosen on the lower chart. Thus, the visualization
allows the user to examine the performance of the classifier
on the training, validation, and test sets easily.

DISCUSSION
We believe our main contribution lies in our work enabling
streaming iteration data from the training classifier. This is
important since most visualizations of this nature are
performed after the training is completely done, which is a
long time when the training is computationally expensive or
slow. This applies to complex models, especially for those

done on a distributed platform like Hadoop where the
throughput is high but the latency is very high, and it often
takes 24 hours to finish a job. Given our visualization’s
streaming capabilities, the progress of the learner can be
tracked while it’s still training, and the model can be
iterated on much more quickly.

FUTURE WORK

Some useful extensions for the visualization are supporting
other kernels for support vector machines, supporting other
algorithms, and including more visual tools to help the
machine learning practitioner make use of the visualization.
Also, performance could be improved to help scale the
visualization to larger datasets.

Our current implementation only supports classifiers of the
form y = Wx + b, since we utilize the W vector in the front
end to classify the points in the visualization. Extending this
to allow extra kernels would be very easy if we move the
classification of points to the back end and send the
classification of each point to the front end. This is also a
valid strategy for allowing more supervised classifiers to be
plotted, such as K-nearest neighbors or neural networks.
Extending the binary classification setting to multiclass is
also as easy as defining more classes and extending the
color scheme.

More tools that we could see being useful to machine
learning practitioners using our visualization include a
confusion matrix as well as information about the saliency
of different dimensions. A confusion matrix would give a
useful, easily understandable numerical summary of the
information that is already plotted in the graph, which can
be important since estimating the quantities from the
scatterplots can be difficult due to the large amount of data
and the the existence of occlusion. Information about the
saliency of different dimensions would be useful since
datasets with high dimensionality have the problem that the
user must choose which features to plot and examine. This
is preferred over plotting the data in terms of the basis

vectors found from methods like principal component
analysis (PCA), since those basis vectors lack the same kind
of interpret-ability as the original features, and it’s not clear
from the basis vectors where further improvements can be
made.

Lastly, performance for the visualization can be improved.
The scatterplot matrix is particularly computer-intensive
when re-rendering the data points, so further research into
efficient ways to draw the points or only partially draw the
points would result in a lot of gains.

REFERENCES
1. Holmes, Geoffrey, Andrew Donkin, and Ian H.
Witten. "Weka: A machine learning workbench."
Intelligent Information Systems, 1994. Proceedings of
the 1994 Second Australian and New Zealand
Conference on. IEEE, 1994.
2. Hall, Mark, et al. "The WEKA data mining
software: an update." ACM SIGKDD explorations
newsletter 11.1 (2009): 10-18.
3. Talbot, Justin, et al. "EnsembleMatrix: interactive
visualization to support machine learning with multiple
classifiers." Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2009.
4. Frank, Eibe, and Mark Hall. Visualizing class
probability estimators. Springer Berlin Heidelberg,
2003.
5. Rheingans, Penny, and Marie Desjardins.
"Visualizing high-dimensional predictive model
quality." Proceedings of the conference on
Visualization'00. IEEE Computer Society Press, 2000.
6. C.-C. Chang and C.-J. Lin. LIBSVM : a library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1--27:27,
2011.
7. Bache, K. & Lichman, M. UCI Machine Learning
Repository. Irvine, CA: University of California, School
of Information and Computer Science, 2013.

