
Decoding the Text Encoding

Hamid Izadinia and Fereshteh Sadeghi
Computer Science and Engineering

University of Washington
{izadinia,fsadeghi}@cs.washington.edu

ABSTRACT
Word clouds and text visualization is one of the recent most
popular and widely used types of visualizations. Despite the
attractiveness and simplicity of producing word clouds, they
do not provide a thorough visualization for the distribution
of the underlying data. Therefore, it is important to redesign
word clouds for improving their design choices and to be
able to do further statistical analysis on data. In this paper
we have proposed the development of a fully automatic re-
designing algorithm for word cloud visualization. Our pro-
posed method is able to decode an input word cloud visu-
alization and provides the raw data in the form of a list of
(word, value) pairs. To the best of our knowledge our work
is the first attempt to extract raw data from word cloud vi-
sualization. We have tested our proposed method both qual-
itatively and quantitatively. The results of our experiments
show that our algorithm is able to extract the words and their
weights effectively with considerable low error rate.

Author Keywords
Text encoding, visualization redesign, text visualization, word
cloud.

INTRODUCTION
Recently, the use of text visualization and word clouds has
become very popular for visualizing various types of data 1.
Different tools for generating word clouds from the text data
are developed (e.g. Wordle) which help understanding the
greater prominence to words that appear more frequently in
the source text. Of course, the use of word clouds is not
limited to text documents and basically each word cloud
can provide a visualization of the weights of a list of ele-
ments/factors. The word cloud applications usually provide
easy to use interfaces for selecting different fonts, layouts,
and color schemes and give the user the option to choose
the style that is most appropriate for his/her purpose. The
word clouds are visually stimulating and easy to digest. The

1Throughout this document the words word cloud and text visual-
ization are used interchangeably

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2009, April 4 - 9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

Figure 1. Our algorithm takes a word cloud as an input image and
extracts its raw data in the form of a list of words with their corre-
sponding weights.

strength of the text visualization lies in the fact that it clearly
shows the highlights and can convey the high weight words
very quickly. However, the words with smaller weights can
be simply ignored for further comparisons. The text visual-
ization embeds weights of the words and the viewer does not
have access to the actual weights and numbers. Therefore,
the viewer analysis of the text visualization is only based
on the estimation of size which is not exact and is prone to
human size estimation bias. In addition, the viewer compar-
ison for the weights of the words is also biased by the choice
of colors. According to these factors, we believe that it is
needed to have a text visualization decoding tool that can
extract the raw data out of the text visualization images.

In this paper, we want to automatically decode and analyze
the text visualization diagrams. Given an input bitmap image
of a text visualization, we want to automatically extract the
keywords along with their weights so that we will be able to
automatically extract the raw data information and redesign
the input text visualization. This problem is important from
two aspects:

• The use of text visualization, many be a poor design choice
in particular applications. Therefore it may hamper under-
standing of the underlying data which will eventually lead
to biased decisions. Extracting the raw data from these
visualizations can help us produce better visualizations.

• The text visualization, provides a diagram which helps the
user to compare the weight of different factors (displayed
as words). So, it mainly visualizes two dimensional data
in the form of (words,weights). However, the text visual-

1

ization does not provide any other information about the
distribution of data (e.g. the variance, order, etc) which
may be useful for further analyzing the data. Extracting
the raw weights, will let us compute other statistical in-
formation as well as using other methods for visualizing
them.

RELATED WORK
In [3], a method for automatic selection of colors is pro-
posed. Previously, [6] applied Hough transform to extract
bars from bar charts. Authors of [2] produced vectorized
edge maps and applied a set of rules to extract marks from
different types of diagrams (bar, pie, line and low-high charts).
This technique was further used in a human interaction sys-
tem for correcting the automatically generated charts [5]. In
the most recent attempts for automatically analyzing and im-
proving the poor design of charts, [4] proposed a method
that interprets the bar charts and pie charts using the com-
puter vision techniques and the actual numerical information
is extracted using optical character recognition (OCR). Our
work, is also aimed to extract raw data from available vi-
sualizations however, we are different from [4] in two main
aspects:

• In [4], considerable amount of work is done for classify-
ing the different types of charts based on low level visual
features. Here, our focus is to extract information specif-
ically from text visualizations since we believe that using
state-of-the-art computer vision techniques, the discrimi-
nation of text visualization diagrams from other types of
diagrams is trivial.

• Our underlying mathematics and algorithm for extracting
the raw data is totally different from the ideas and proce-
dures used in [4]. The main idea used in [4] is based on
several rules specific to pie charts and bar charts (e.g. bar
charts have horizontal lines and vertical rectangles which
can be extracted using simple shape matching and seg-
mentation. Also, pie charts have several sectors with dif-
ferent colors which can be extracted based on color seg-
mentation) Our work is based on visual extraction of ho-
mogeneous elements (visual letters), detecting which al-
phabet these letters refer to using OCR techniques and fi-
nally building a graphical model on top of the extracted
letters to build words.

In all of the aforementioned works the aim is to redesign and
improve the diagrams using the available information in the
diagrams. Our method will extract the missing weight values
using only visual clues. The result of our work can be used
both in redesigning the text visualization diagram as well as
extracting the missing raw information.

OUR APPROACH
For extracting the raw data of a word cloud we have designed
an algorithm with three main steps which is summarized in
Fig. 2. Here we explain the major steps of building our sys-
tem. The input of our system will be a bitmap image of the
text visualization and the output will be a list of (nominal
variable, value) pairs.

Figure 2. Our data extraction algorithm has three main steps of letter
extraction, word extraction and size estimation which are executed in a
pipeline

Letter extraction
In the first step we find the set of all letters which have ap-
peared in the word cloud which is explained below.

Finding the letter regions: For recognizing the letters form
a bitmap image we first need to find out which region in the
image corresponds to a single letter to extract each and every
individual letter. This includes finding out which pixels cor-
respond to a single letter. We assume that each letter has one
connected segment in the image with the same color. The
background has a different and distinctive color. We use a
visual segmentation method for finding the region of each
letter which is based on finding the connected components
in an image. The connected component algorithm works by
scanning an image pixel-by-pixel (from top to bottom and
left to right) and group its pixels into components based on
pixel connectivity, i.e. all pixels in a connected component
share similar pixel intensity values and are in some way con-
nected with each other. In Fig 3 the extracted regions are
shown for an input example. The colored letters in part (a)
of the figure show the uniform regions that are discovered. In
part (b) the tight bounding boxes around the extracted letters
are shown. These boxes will be used for letter size estima-
tion.

Assigning regions to letters: Once the letter regions are
extracted from the input image, we generate the foreground
mask for each letter. This can be done by binarization of
segmented regions into foreground/background. Then we
create an image patch for each foreground mask and pass it
to an Optical Character Recognition (OCR) algorithm. The
output of this stage is the actual letters for each image patch.
The OCR algorithm basically matches each input to its set of
known letters and assigns the best match letter to each input
patch.

Word extraction
After the word extraction is finished in the previous step,
we will end up with a bag of disconnected letters. In order
to construct the words out of the extracted letters, for each
input word cloud we build a complete graph of the all the
detected letters and map the problem to a graph theoretic
problem. For doing this, we assign each detected letter to a
node in the graph. The edges of the graph are built based on
the amount of similarity between the nodes.

Modeling nodes in the graph: Each node n, has several
properties which are defined based on the visual appearance
of its corresponding letter. Basically, these properties are the
spatial location (x, y), color c and the area A of the tight
bounding box around the letter defined using the width and
height of the box. The node properties are important since

2

(a)

(b)

Figure 3. The letters are extracted by finding the connected compo-
nents of the image. (a) The extracted letters using connected compo-
nent analysis. (b) The tight bounding boxes around the letters that are
used for letter size estimation.

Figure 4. The word cloud relation graph is a complete graph that con-
nects all the nodes with a similarity weight. The sweep line visits the
nodes from left to right to finds the words.

they provide clues on to which word they belong.

Modeling edges in the graph: Each detected letter is re-
lated to other letters in the graph based on the amount of
similarity. Since the nodes have three properties of location,
color and size, the similarity between any two nodes ni and
nj will be defined based on the amount of agreement be-
tween these properties.

W (ni, nj) = dx(ni, nj) + dy(ni, nj)+

dcolor(ni, nj)+

dheight(ni, nj) + dwidth(ni, nj) (1)

In the above equation dx and dy refer to the spatial distance
in the x and y directions. Also, dcolor is the distance between
in two colors in terms of RGB and dheight and dwidth are the
difference of the width and height of the two letters.

Words as groups of similar letters: After building the graph
and defining the nodes and edges, the problem of word ex-
traction will be reduced to finding groups of nodes with high
similarity. Each of this groups will correspond to a word.

Figure 5. An example which shows how our algorithm sweeps the input
image and how we construct the bipartite graph at each time slot.

For doing this, we find multiple cuts in graph and generate
clusters of the nodes based on their similarities where each
of these clusters will correspond to a word. Fig. 4 is an ex-
ample which shows part of a graph for an input word cloud
diagram.

Word construction using sweep line and bipartite graph
matching: For finding the words we start visiting each and
every node in a sweep line fashion. For extracting the hor-
izontal words, we move the sweep line from the left most
side of the word cloud diagram to the right. At each time we
move the sweep line k pixels to the right and the sweep line
will visit a number of nodes. Each of the visited nodes is
a letter which corresponds to one of the current discovered
words or will start making up a new word. In the beginning
we start with no discovered words so the visited node in the
first time slot will be considered as being the first letter of
words. For connecting the rest of the letters of a word to
the currently discovered letters, in the following time slots,
we construct a bipartite graph with the current visited nodes
and their direct neighbors. For finding the most confident
matching letter, we solve a bipartite graph matching [1]. In
this case, for each visited letter we find its adjacent letter by
finding its best match (see Fig. 5 for an example). After find-
ing the best match for each of the visited nodes, we will re-
move the visited nodes and all the edges connecting to them
from the graph. We continue this until we encounter a best
matching edge whose weight is higher than a certain thresh-
old τ where we consider that edge as an invalid edge which
means that we have visited all the letters of a word and it is
completely extracted. This process continues until the whole
image is sweeped by the sweep line. For extracting the ver-
tical words, we repeat this procedure with a vertical sweep
line where the sweep line will be moved from the bottom of
the image toward the top.

Size Estimation
After finding the words, we compute the size of each word
based on the area of the tight rectangular around the word
divided by the number of letters in that word.

RESULTS AND DISCUSSION
For evaluating our method, we conducted two types of ex-
periments. In the first part of the experiments we run our pro-
posed algorithm on images collected from web and compare
the results qualitatively. In the second part we produce word

3

S
n

a
p

sh
o
t

3
S

n
a
p

sh
o
t

2
S

n
a
p

sh
o
t

1
Word Cloud Histogram

Figure 6. An example of the output of our method in three random
snapshots.

clouds using a visualization software and quantitatively eval-
uate the output by comparing against the ground truth data.

Qualitative Experiments
We qualitatively evaluate the performance of our algorithm
by running it on a collection of word clouds downloaded
from google images 2. In this experiment we saved the re-
sults in different snapshots of the algorithm and produced
the corresponding bar chart. These results are saved in the
form of a video which visualizes the progress of our algo-
rithm in finding the words and their weights. We observed
that the produced histograms are consistent with the actual
word clouds. An example of the snapshots of our algorithm
running on a word cloud downloaded from google is shown
in Fig. 6.

Quantitative Experiments
For conducting quantitative evaluation, we produce word clouds
from known raw data. For producing the word clouds we
use a D3 software 3. In this case, we can have word clouds
while we have access to their actual raw data. We selected
several documents and used the aforementioned software to
produce word clouds and saved the output in png and svg
file formats. The png file is used for testing and the svg file
is used for extracting the ground truth data. For generating
the ground truth raw data, keywords along their weights are
2https://www.google.com/search
?site=imghp&tbm=isch&source=hp&biw=1333&bih=581&q=wordle
3http://www.jasondavies.com/wordcloud/

D3 cloud papers CSE NYT wiki
Error 11.8808 14.1873 25.4435 14.0851 9.6159

Table 1. RMSE using five documents as the test set

extracted from svg file. For quantitatively evaluating our re-
sults with the ground truth data, we compare our estimated
size with the ground truth font size of the words. For each
extracted word of our algorithm, we calculate its distance
to the list of ground truth words and find its closest match
since the OCR algorithm can have mistakes in predicting the
right letters. We then compute the root mean square error
(RMSE) of the predicted word sizes compared against the
ground truth word size which will be the final error of our
algorithm.

RMSE =

√∑Nwords

t=1 (Se
i − S

gt
i)2

Nwords
(2)

In the above equation. Se
i and Sgt

i refer to the estimated and
ground truth size of the ith word and we have Nwords total
number of words. Different types of documents are selected
for doing the qualitative analysis which are as follows:

• Text sample D3 word cloud (D3 cloud)

• Accepted conference papers (papers)

• CSE news (CSE)

• A news paper from New York Times (NYT)

• Wikipedia paper for interactive visualization (wiki)

Table 1 summarizes the performance of our algorithm on
the accuracy data extraction from the above list of the word
clouds. We have provided the per word error size estimation
error for the D3 cloud test set in Fig 7. To the best of our
knowledge, this work has been the first attempt for extracting
the raw information from word clouds so at this time there is
no baseline to compare our results with. We believe that our
algorithm has produced fairly good results both qualitatively
and quantitatively.

CONCLUSION AND FUTURE WORK
In this paper we proposed a novel method for automatically
redesigning word clouds. Using our method we will be able
to extract the raw data from a word cloud visualization. Our
method is built upon extracting the letters using pixel wise
connected component analysis and constructing words us-
ing graph theory methods. We have ran several experiments
to evaluate our method both quantitatively and qualitatively
using downloaded word clouds from google as well as self
produced word clouds by D3. The results of our experiments
show that our method is able to extract the words with their
corresponding weight with considerably high accuracy. For
further improving this method, we can use better OCR meth-
ods which incorporate probabilistic word completion tech-

4

Figure 7. Per word size estimation error in the D3 cloud document

niques. Also, we can expand our current dataset to test the
performance of our method more thoroughly.

REFERENCES
1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. The MIT Press, 3rd
edition, 2009.

2. W. Huang, R. Liu, and C. Tan. Extraction of vectorized
graphical information from scientific chart images. In
Document Analysis and Recognition, 2007. ICDAR
2007. Ninth International Conference on, volume 1,
pages 521–525, Sept 2007.

3. S. Lin, J. Fortuna, C. Kulkarni, M. C. Stone, and J. Heer.
Selecting semantically-resonant colors for data
visualization. Comput. Graph. Forum, 32:401–410,
2013.

4. M. Savva, N. Kong, A. Chhajta, F.-F. Li, M. Agrawala,
and J. Heer. Revision: automated classification, analysis
and redesign of chart images. In UIST, pages 393–402.
ACM, 2011.

5. L. Yang, W. Huang, and C. Tan. Semi-automatic ground
truth generation for chart image recognition. volume
3872 of Lecture Notes in Computer Science, pages
324–335. Springer Berlin Heidelberg, 2006.

6. Y. P. Zhou and C.-L. Tan. Hough technique for bar charts
detection and recognition in document images. In Image
Processing, 2000. Proceedings. 2000 International
Conference on, volume 2, pages 605–608 vol.2, Sept
2000.

5

	Introduction
	Related Work
	Our Approach
	Letter extraction
	Word extraction
	Size Estimation

	Results and Discussion
	Qualitative Experiments
	Quantitative Experiments

	Conclusion and Future Work
	REFERENCES

