
A Visualization Solution for Astrophysics:
Generating Galactic Merger Trees Using D3

Laurel Orr Jennifer Ortiz

INTRODUCTION
With the help from high-performance computing, scientists
have been able to run large scale simulations to model the
behavior of complex, natural systems. The amount of data
generated during this process is so massive that it becomes
challenging to analyze and interact with the data using tradi-
tional methods. In the field of cosmology, astronomers have
run these large scale simulations to model the behavior of par-
ticles interacting from the Big Bang up to present day (a span
of 14 billion years). The end goal behind these simulations is
to be able to better understand how galaxies such as the Milky
Way form and have evolved over time. In particular, cosmol-
ogists want to analyze which galaxies merged together over
time to create the galaxies we see today. These hierarchical
mergings across a span of time are typically represented as
tree structures where each level represents a time step and the
root represents the present day galaxy as seen in Figure 1.

To generate these trees, cosmologists take the raw particle
data and at each time step, cluster the particles into galaxies
(also called halos). These halos represent the nodes of the
tree. They then generate the edges between nodes by tracing
the location of the particles at each time step. Once the trees
are created, cosmologists are particularly interested in explor-
ing the structure of the trees, finding major merger events, and
finding galaxies that might be of interest to explore further.
Unfortunately, generating these merger trees from simulation
data and visualizing them is time consuming and not trivial.
In the cases where they might want to visualize a merger tree,
cosmologists are often forced to draw them by hand and lose
the exploratory benefits of using an interactive visualization.
In this paper, we discuss the process behind generating the
data required to build and eventually visualize the trees. Fol-
lowing this discussion, we describe the visualization features
in-depth followed by an evaluation and a summary of future
work.

RELATED WORK
There has been prior work focused on building merger trees in
other sciences with the majority being in biological sciences.
In biology, merger trees are commonly used to represent phy-
logenetic trees as seen can be seen in the tree of life [3]. This
project focuses on exploring and visualizing the evolutionary

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.

Figure 1. Merger Tree

relationships between living things on Earth. Similar con-
cepts such as time steps and merging exist in these graphs,
but unfortunately, there has been less work done in building
and visualizing these types of trees in cosmology.

There has been some work in cosmology focused more on
analyzing particle simulations. For example, a project by [7]
focused on building an open source toolkit to allow for anal-
ysis of astrophysical simulations. The toolkit is organized
around physically relevant structures, such as halos, com-
pared to specific simulation code and structure. They sup-
port a variety of simulation input styles and provide functions
to output GraphViz data that contains the merger tree result.
Another tool by [4] allows for reading specific astrophysical
simulation files, includes useful calculations such as moments
of inertia, and most importantly, is parallelizable, which al-
lows for real time analysis and visualization. However, this
tool is not as user friendly as it requires specific input formats,
and both projects do not allow for much interactivity from the
user.

Another group extended the work on galactic merger trees by
providing a 3D visualization of the merger history [6]. They
specifically focus on detailing possible dynamics and events
that may happen when mergers occur. Since they focus on
specific events between mergers, other factors like the over-
all structure of the tree cannot be seen through this type of
visualization.

METHODS
There were three main phases in this project. First, we gath-
ered the appropriate data in order to generate the tree, and as
features were introduced, we reused the old queries to gener-
ate new data. Second, we developed our visualization and
continually modified the layout and added interactive fea-

1

tures. Last, we were able to evaluate our visualization by
presenting it to a couple astronomers at UW who were col-
laborating with us throughout this project.

Data Processing
The simulation data provided consists of 33.6 million par-
ticles throughout 27 time steps where each time step corre-
sponds to a snapshot of the universe at a specific time since
the Big Bang. Each particle has a unique identifier and each
is one of three types: dark, star, or gas. Each time step is a
separate dataset containing the unique identifier of each par-
ticle, its location in a 3D space, luminosity value, mass, ve-
locity, and halo group number. The group number refers to
the halo cluster that a particle belongs in at each time step.
If the group number for a particle is 0, this means that the
particle does not belong to any halo at that specific time step.
Between time steps, particles may either stay in their current
halo, move to another halo, or move to a state where they do
not belong to any halo. We can explore the history of a halo
by tracing the locations of its particles across time.

In order to generate the edge and node list needed to build
the merger tree, we first created two tables, HaloTable
(HaloID, GrpID, TimeStep) and ParticleTable (ID, HaloID,
Type, Mass, Luminosity). From these tables, we queried
across all time steps through a series of self-joins to create the
edges. The computation of an edge list for all trees represent-
ing the histories of all present day halos took approximately
40 minutes. For this visualization, we pruned the data to only
include merger histories for present day halos that have a sim-
ilar mass to the Milky Way, resulting in a total of 365 halos.

Visualization Features
Upon first interacting with the astronomers, there were cer-
tain features they desired for the visualization. One included
the ability to see the entire structure of the tree and collapse
nodes for easy navigation. They also wanted the nodes sized
according to mass and information on the number of dark par-
ticles and total particles in each node to be accessible. From
this criteria, we decided to construct this visualization using
D3.

Tree Structure
The first main concern was to generate a tree layout. Using
D3, the two main options to visualize a graph were a force-
directed layout and a tree layout. We initially did not consider
the force-directed graph layout, but upon discovering that the
halo histories were not strict trees and had some instances of
halos splitting (a child having more than one parent), we had
to consider more generic graph layouts. The main advantage
of a force-directed layout was its ability to represent the DAG
structure of the histories. The disadvantage was that without
more advanced modifications, it did not layout the tree in a
way that made it easy to see each level for each time step.
Constraints had to be added in order to position nodes to eas-
ily understand and see the structure as a tree. On the other
hand, the tree layout solved this problem by laying out the
nodes such that the nodes were lined up at each time step.
The disadvantage for this layout was that it broke when it
tried to layout a tree in cases where a node splits.

Figure 2. Tooltip that displays when hovering over a node

There were four possible solutions to this problem. We
could duplicate the child that had multiple parents, or we
could only keep one parent for each child. Both of these
were problematic since they inaccurately represented the data
and could mislead the astronomers. Another solution was
to use GraphViz to dynamically generate layouts by com-
piling GraphViz into javascript, but the main problem was
that if nodes were collapsed, the positioning of the nodes in
GraphViz changed drastically in a way that would complicate
transitions and confuse users if they wanted to collapse nodes.
A final solution was to use GraphViz to provide initial posi-
tions and then build our own layout in D3. After discussing
the problems and solutions with the astronomers, we decided
to not concentrate on perfecting the tree layout but instead fo-
cus on generating interactivity in the visualization. Thus, we
decided to keep the parent node of each child that shared the
most particles with the child and stick with the tree layout.

With the use of online examples and D3’s zoom interface, we
easily added the ability to collapse nodes and zoom and drag
the tree. The panning and zooming is bounded so that users
are not allowed to zoom too far out or in to completely lose
the tree from view nor allowed to drag the tree off the screen.

Node and Edges Features
The nodes represent halos at each time step, and each node
can be collapsed by a single click. By holding down the
mouse and moving the node, the entire tree is dragged and
the node does not collapse. The scroll wheel on the mouse is
used to zoom. When collapsing a node, an arrow is displayed
indicating that there exists hidden children nodes. The node
radius was sized according to mass of the halo. Tooltips were
added to include the ability to see more information for each
node upon hover. This extra information includes the halo
group identifier, mass, total number of particles, total number
of dark particles, and total luminosity value. Since some of
the nodes are quite small, we needed to make sure users could
easily click to collapse and hover to see the tooltip. Thus, we
created an invisible circle attached to each node with a radius
either equal to the node’s radius (for larger nodes) or equal
to a fixed radius (for smaller nodes) that contain the mouse
listeners. With this, even the smallest nodes are more acces-
sible.

Additionally, since the tree can be zoomed and dragged
around, the tooltip interactions were modified so the infor-
mation box was not placed off screen and did not show while
a user was issuing a drag or zoom command. Since we used
radius size to represent mass, we used color to represent pro-
genitor halos. Therefore, a red node represents a progenitor

2

while steel blue represents a non-progenitor. Progenitor halos
are defined as those halos that contribute the greatest number
of particles to the present day halo for each time step. Edges
between the nodes represent the flow of particles between the
halos in sequential time steps. The thickness of the edge is de-
termined by the number of particles that are shared between
the two connected halos.

Graph Filters
Two function graphs were added to include an option of high-
lighting specific halos. The graphs display the frequency of
the number of halos that have a specific mass (left graph) or
a specific number of particles (right graph) as an area where
the total area represents the total mass or total number of par-
ticles in the current tree throughout time. In order to properly
see the area for each graph, a log scale for the mass and par-
ticle count had to be used for the x-axis. The y-axis is linear
based on the frequency. The graph was created by binning
the mass and particle count of each halo. For these graphs,
there were 20 bins created. A brush tool was added to each
graph so the user can highlight an interval of the mass (or
particle count) she is interested in. Upon brushing the graphs,
the nodes that fit the criteria are highlighted. The user also
can manually enter new brush ranges and hit the ”Update In-
terval” button to alter the brush accordingly (to avoid confus-
ing users, pressing the Enter key has no effect). Initially the
nodes were highlighted by adding a fill color to the inside of
the nodes selected. Unfortunately, it was hard to see which
of the small nodes where highlighted so we added another
outer circle to each node to show the highlight effect. Each
of these outer circles include a blur effect to emphasize that
those specific nodes are being highlighted.

Tree Selection
The scroll bar at the top of the visualization is used for navi-
gating between trees and potentially finding other interesting
trees. If there is a particular tree an astronomer wants to jump
to, the associated group number of the root node can be di-
rectly typed into the text box to the left, and upon pressing
the Enter key, that tree will be displayed if it is an existing id.
Since a main component of the visualization is exploration,
the thumbnails were created to facilitate quick structural com-
parisons between the current tree and other trees. We high-
lighted the path of the progenitor in these thumbnails since
that is the halo path of interest to the astronomers. We kept
the thumbnail of the current tree fixed to the left to allow for
quick visual comparison between thumbnails instead of try-
ing to compare the thumbnail to the large tree diagram. These
thumbnails become highlighted upon hovering over them, in-
dicating if they are clicked, that tree will be displayed below.

The thumbnails were created by using our D3 tree generation
code in tandem with Node.js, a software platform for server-
side applications where programs are written in JavaScript
and run within the Node.js runtime, and ImageMagick, a soft-
ware suite to manipulate images. Using Node.js, we ran D3
on our local machine to generate the SVG of each thumbnail
tree. The SVG was then piped to ImageMagick, which con-
verted the SVG to PNG images.

Tree Similarity

Given that there are a 365 trees, displaying all the trees in the
scroll bar would be overwhelming and could potentially slow
the visualization. Choosing which trees to display then be-
came a challenge. Since the astronomers are interested in the
merge patterns that exist between trees, we used the notion of
bisimilarity to implement a comparison metric based on tree
structure [1]. For two trees T1 and T2, we say the children of
node n at time step t are those nodes at time step t + 1 with
edges from n. We define the binary relation R ⊆ T1 × T2 to
be a bisimulation when for all (n, v) ∈ R where n ∈ T1 and
v ∈ T2,

• n and v occur in the same time step

• n and v have the same number of children

• For all children n′ of n, there exist a child v′ of v such that
(n′, v′) ∈ R

• For all children v′ of v, there exist a child n′ of n such that
(n′, v′) ∈ R

If (n, v) ∈ R, we say n is bisimilar to v.

Intuitively, two nodes in T1 and T2 are bisimilar if they occur
at the same time step, have the same number of children, and
their children are bisimilar. In terms of the merger trees, this
bisimilarity means that the merges of bisimilar nodes involve
the same number of halos and occur at the same time.

We calculated the bisimulation offline by first letting all nodes
at the same time step with the same number of children be
bisimilar to each other and then iteratively checking the con-
ditions of all the descendants. Since the trees had a maximum
height of 27, we iterated 27 times.

Finally, for each pair of trees T1 and T2 and the bisimulation
R ⊆ T1 × T2, we define the bisimilarity distance to be

Bdist(T1, T2) =
|{n ∈ T1 : (n, v) ∈ R}|+ |{v ∈ T2 : (n, v) ∈ R}|

|T1|+ |T2|
.

For the top scroll bar, we display the closest 14 trees as mea-
sured by the bisimilarity distance. We chose 14 somewhat
arbitrarily to give users enough trees to stay engaged but not
overwhelmed. This number should be evaluated as part of
future work.

Tree Reset and Transitioning
The two instances when the view of the tree will change with-
out a user scrolling or dragging are when the user clicks the
reset view button or selects to change the tree by either enter-
ing a new group number or clicking on one of the thumbnails.
The reset view reorients a user if she “got lost” in the dragging
and zoom of the tree. We hoped to prevent that by bounding
the drag and zoom but still added this feature. The reset view
acts like a page refresh on the tree, except we staged it so
the user can understand the visual transitions. We first zoom
out and recenter the tree in one transition and then expand
the children in reversed collapsed order. In other words, if a
node’s grandchildren are collapsed and then the children are
collapsed, the children will expand and then the grandchil-
dren will expand. Figure 3 shows a node whose children and

3

Figure 3. Example of children expansion upon clicking the reset view
button. The left image is before resetting the view, the middle is after
one transition, and the right after a second and final transition.

grandchildren have been collapsed going through the expan-
sion transition. The left image is before the user clicks the
reset view button. The middle image is after the first expan-
sion transition, and the right image is after the second and in
this case last transition. We staged it this way to better help
the user understand what was undone to reset the view.

When a new tree is selected, the same general transitioning
procedure as for the reset view button is followed, except we
do not iteratively expand the children. We expand all the chil-
dren and grandchildren in one step, and then we collapse the
tree to the root and expand to the new tree. We removed the
iterative expansion process since the user will be looking at
a new tree and does not need to understand exactly how the
children of the former tree were expanded. We also did not
want to frustrate the user by having to wait longer than nec-
essary to view a new tree.

Extra Toggle Features
Extra toggle features include the ability to remove the graphs
from view, remove the tooltips, and view the luminosity of
the tree. We added the options to remove the tooltips and
graphs in order to avoid distractions or nuisances during the
exploration process. The luminosity is based on aggregating
the luminosity of each particle in a halo. Once the user selects
the luminosity view, they will see the nodes change opacity
depending on the halo’s luminance. An example of the lumi-
nance feature is seen in Figure 4. The luminance observed is
not only relative to the current tree viewed but also relative to
all the trees across all time steps. We did not include luminos-
ity as part of the standard view to avoid too much complexity
and indiscernible features.

Figure 4. Luminosity Feature

RESULTS
See Figure 5 for a screen shot of the final visualization. This
visualization is intended for use on a screen at least 22 inches
across with a standard 16:10 aspect ratio. However, it is also
usable on standard monitors such as the one on a MacBook
Pro. Upon running this visualization, it took anywhere from 1
to 3 seconds to load with the majority of the time being spent
loading the D3 javascript file from d3js.org and loading the

links csv file. Once the merger tree is displayed, the particle
count and mass graphs are immediately updated based on the
tree shown. Navigating between trees results in smooth tran-
sitions taking about one second to complete. Brushing and
highlighting features is without delay, even for busy merger
histories.

DISCUSSION
For this visualization, the audience has consisted of mem-
bers from the database group and also astronomers from UW.
Upon showing this visualization to the database group, they
have decided to include this visualization on top of their
Myria system. Over the past year, the database group has
developed a new engine for Big Data. The vision behind this
system is to meet the needs of today’s users, particularly those
in the domain sciences. The system will go public and along
with it, applications built on top of the system that will help
others like astronomers and oceanographers explore their data
in an efficient and feasible manner. Although the current data
for our visualization is all pre-computed, the goal will be to
incorporate this visualization on top of the Myria system so
that astronomers be able to easily query merger histories on-
the-fly for larger simulations.

Throughout the process of creating this tool, we’ve been in
contact with the astronomers Lauren Anderson and Sarah
Loebman nearly every week. When we initially talked with
them, they expressed their need for a tool to help them figure
out where the exploration should happen because they were
unsure exactly what types of halos they were interested in.
Thus, this visualization is intended to help them narrow down
specific merger histories they may like to do an in-depth anal-
ysis on. They also look forward to using this tool with newer
and larger simulation datasets. Currently, this visualization
is based on a low resolution dataset, and a new dataset they
want to visualize has a resolution high enough to resolve the
morphologies of low mass galaxies. We hope that they can
begin to use this tool to explore all sizes of data and pinpoint
important merger tree characteristics and relevant halos.

It is interesting to note the work behind finding the history of
present day halos began back in 2009. This is the first time
the astronomy department will be able to see and interact with
a visualization of this merger tree work. Upon showing Sarah
and Lauren this recent work, they pointed out interesting ob-
servations. For example, by navigating through the trees us-
ing the scroll bar based on the similarity metric, they noticed
that if you are viewing an active merger tree, it is easier to
find other active merger trees while if you are viewing a qui-
escent merger tree, it is likely you will find other quiescent
merger trees. Quiescent mergers are merger histories where
not much merging occurs (most parents have one child). They
liked this feature of finding similarly busy merger histories.

At this recent meeting, after explaining all of the features,
they were very excited and kept giving us information they
wanted to add and features they thought would be helpful im-
provements. These additional features indicated their interest
and belief that this visualization will be beneficial and rele-
vant in the future. They were mostly just excited to finally
have a tool at their disposal that allowed them to look at these

4

d3js.org

Figure 5. Visualization of a Galactic Merger Tree

structures. As a result of this meeting, we will demo this visu-
alization at an astronomy research meeting in the next couple
weeks.

FUTURE WORK
There is much potential for this work to be extended in the
future. Some of the possible extensions include finding a way
to extract specific information about the halos shown on the
screen. For example, when using the brush tool, Sarah asked
if there was a way to “save” the halos she was highlighting to
a file. Also, there is more room for improvement to facilitate
data analysis. For example, Lauren is interested in finding
how temperature changes as a function with respect to the
number of gas particles. One way to add this feature would
be to include the ability select a path of the tree. We can then
tell users about how certain properties such as luminosity or
temperature has changed across time along that path. An am-
bitious addition would be to provide the user with the ability
to define their own function with respect to the properties de-
fined in the tree.

Another major feature to add that is critical to the astronomers
involves finding a way to show the splits that occur for some
halos. As explained previously, this would involve finding a
different way to layout the nodes besides using the D3 tree
layout. Likely, we would use GraphViz to help us find initial
positions and then alter the tree layout in D3 to create tran-
sitions and include collapsing to make it work with a DAG
graph.

REFERENCES
1. Alzogbi, A., and Lausen, G. Similar structures inside

rdf-graphs. In LDOW, CEUR Workshop Proceedings,
CEUR-WS.org (2013).

2. Loebman, S., Nunley, D., Kwon, Y., Howe, B.,
Balazinska, M., and Gardner, J. P. Analyzing massive
astrophysical datasets: Can pig/hadoop or a relational
dbms help?

3. Maddison, D. R., Schulz, K.-S., and Maddison, W. P. The
tree of life web project. Zootaxa 1668, Linnaeus

5

Tercentenary: Progress in Invertebrate Taxonomy (2007),
19–40.

4. Moran, C. C. Astroviz: A parallel visualization tool for
astrophysical applications, 2009.

5. Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., and
Zhou, Y. Treejuxtaposer: Scalable tree comparison using
focus+context with guaranteed visibility. In ACM
SIGGRAPH 2003 Papers, SIGGRAPH ’03, ACM (New
York, NY, USA, 2003), 453–462.

6. Takle, J., Silver, D., and Heitmann, K. A case study:
Tracking and visualizing the evolution of dark matter
halos and groups of satellite halos in cosmology
simulations. In Visual Analytics Science and Technology
(VAST), 2012 IEEE Conference on (Oct 2012), 243–244.

7. Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman,
S. W., Abel, T., and Norman, M. L. yt: A multi-code
analysis toolkit for astrophysical simulation data.

6

	Introduction
	Related Work
	Methods
	Data Processing
	Visualization Features
	Tree Structure
	Node and Edges Features
	Graph Filters
	Tree Selection
	Tree Similarity
	Tree Reset and Transitioning
	Extra Toggle Features

	Results
	Discussion
	Future Work
	REFERENCES

