
rqt bag diff: Tool for Visual Comparisons of Robot Sensor Data

Michael Jae-Yoon Chung

Fig. 1. Example use case of rqt bag diff. New control features that were not included in rqt bag are annotated. Suggested configura-
tions for rviz (upper right corner), rqt plot and rqt image (lower right corner) are used to visualize sensor data.

Abstract— rqt bag diff is a novel tool for visual comparisons of robotic sensor data. rqt bag diff provides effective data inspection
and comparison functionalities by 1) building on top of an existing ROS-based visualization tool that is robust against size of the data,
2) providing new event-based navigation and filtering-based data management features and 3) providing templates for using existing
ROS-based visualization tools leveraging small multiples and layering design principles.

1 INTRODUCTION

Building event detectors is a fundamental task for researchers working
with robotic sensor data. By event, we mean any physical incident
that we consider important to the robot, for example, door opening,
robot bumping into a wall, etc. To analyze sensor data for building
event detectors, researchers commonly 1) export sensor data into text
files and read them from numeric computing and graphics software
environments such as MATLAB [5], Python [3, 1] and R [6, 12], or
2) use ROS-based software, such as rviz [11], rqt bag [9] and rqt plot
[10] to visualize and replay the data.

While both approaches have strengths, they also have significant
problems. The first approach allows a user to create a custom visual-
ization tool by providing them low-level graphics APIs. However, if
sensor data is too large to fit in memory 1, then the user must write ad-
ditional data management scripts. The user produced scripts are error
prone and not generalizable to arbitrary sensor data.

• Michael Jae-Yoon Chung is with University of Washington, Computer
Science & Engineering. E-mail: mjyc@cs.washington.edu.

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

1a file containing 10 minutes of rgbd camera, imu, audio and laserscan sen-
sor data collected with realistic data collection rate can have file size larger than
10gb.

The second approach provides visualization tools that can deal with
large size sensor data. In addition, these tools are reusable since ROS
has grown to become almost standard tools for dealing with almost
any robotic sensor hardware. However, these tools are not designed
for data comparison purposes–the user can visualize only one sensor
source at a time, which makes it almost impossible to visually compare
two sensor data from different sources. Therefore, performing data
analysis tasks with the goal of building event detectors is extremely
challenging.

Considering the pros and cons of previous approaches, we claim:
robotic sensor data visualization tools for building event detectors
must support effective data inspection and comparison. By effective
data inspection, we mean the user must be able to inspect their sensor
data regardless of its size, and be able to navigate to the timepoints of
interest without complex scripting. By effective data comparison, we
mean the user must be able to make visual comparisons of sensor data
within existing visualization tools.

In this paper, we introduce rqt bag diff–a novel tool for visual com-
parisons of robotic sensor data. rqt bag diff provides effective data
inspection and comparison functionalities by 1) building on top of an
existing ROS-based visualization tool that is robust against size of the
data, 2) providing new event-based navigation and filtering-based data
management features and 3) providing templates for using existing
ROS-based visualization tools leveraging small multiples and layering
design principles. We then present a case study involving sensor data
collected from a mobile robot.



Fig. 2. Data analysis scene with rqt bag. rviz (top) is displaying sensor data from rgbd camera and laserscan sensors. rqt plot (lower left) is plotting
three dimensional linear acceleration data (x,y,z) from imu sensor. Although not visible, recorded sound data is also being replayed.

2 RELATED WORK

To the best of our knowledge, we have not yet seen an existing visu-
alization tool that explicitly supports data analysis with the purpose
of building event detectors. However, our work is closely related to
visualization tools from multiple communities.

From the robotics community, rviz [11], rqt bag [9] and rqt plot
[10] are the most related tools that can indirectly help perform data
analysis with the intent of building event detectors. rqt bag is a GUI
for navigating and replaying .bag formatted sensor data (bag file2)–a
file format given to the data recorded using rosbag [8]. rviz allows
a user to visualize sensor data in the simulated 3D environment. For
example, a user can visualize a robot description model, laser scan
data, and pointcloud data in spatially correct places. rqt plot is a real-
time line plotting tool for visualizing any numerical sensor data. For
example, a user can display three dimensional accelerometer sensor
data using rqt plot with three overlaid lines with distinct colors.

Using these three tools together, a user can visualize and navigate
sensor data with minimal effort. However, performing data analysis
with the purpose of building event detectors with these tools is still
a challenging task. First, the user must memorize summaries of pre-
viously visualized sensor data from the multiple time intervals that
they is interested in. Then, they needs to compare those memorized
summaries to come up with an idea for building event detectors. In
practice, this is nearly impossible as the size of sensor data grows.

From the computer vision communities, we observed numerical
computing and graphics software environments, such as MATLAB,
R and Python are often used for data analysis. Their rich, low-level
graphics APIs provides expressiveness to users. rqt bag diff attempts
to adapt some of this expressiveness for data management purposes.
However, rqt bag diff is fundamentally different since we do not re-
quire users to write any scripts for visualization purposes.

The Viz-A-Vis [7] project attempts to compactly visualize multiple
computer vision features and their aggregations from large video data
(> 7500 hours) using 3D visualization techniques. In addition, it pro-
vides an interactive navigation functionality to help the user inspect
the data effectively. While this tool provides a road map of computer

2See http://wiki.ros.org/Bags for more details about ROS bags

vision features which can be useful for the understanding data patterns
near the events, this tool does not support time interval comparison
functionality which is critical for building event detectors.

Visualization tools from the video editing and annotation fields are
also related. The ANVIL video annotation tool [4] allows the user
to annotate video in a hierarchical manner. The user can annotate
each time frame of the video data with user-defined “state”, and those
annotated states can later be organized into a hierarchical structure.
The hierarchical annotation structure formed by the user gives a well-
organized landscape of annotations, which in our case can be the land-
scape of the events.

Apples iMovie [2] also provides intuitions for organizing and nav-
igating the time-series data. Their overall layout, video data drag and
drop editing interface and instant playback while moving the mouse
in the video clip area makes iMovie an intuitive inspecting and editing
tool for multiple video data.

3 METHODS

3.1 rqt bag

Since we are using rqt bag as a base framework for our work, we first
describe rqt bag. The lower right window in Fig. 2 shows the origi-
nal rqt bag interface. In the center, loaded bag files are displayed on
a timeline. On the left side of the timeline, the names of recorded
topics3 are listed. On the timeline, the presence of sensor data from
each topic is displayed as a vertical colored bar. For example, in
Fig. 2, we can see that the data is sparse in the wifi data and
manu../events/elevator state topics, whereas the other
topics have denser data. The color of each bar represents the type
of the sensor data; green represents camera-related data, red repre-
sents laserscan-related data and blue represents all other types of sen-
sor data.

The control buttons are located on the top portion of the interface.
The first three buttons on the left are for recording, loading and saving

3Topic is a term used in ROS to refer to a communication channel. For
example, /audio refers to a topic where the audio data is transferred. Please see
http://wiki.ros.org/Topics for details.

http://wiki.ros.org/Bags
http://wiki.ros.org/Topics


bag files. The following three buttons are for slowing down, start-
ing/stopping and speeding up the playback speed. The next three but-
tons are for zooming in, zooming out and zooming to fit the timeline.
The last button toggles datatype-specific extra visualizations. In addi-
tion to the buttons, the interface also provides basic keyboard inputs to
move the timeline left or right and mouse inputs to seek to a desired
position in the currently displayed timeline.

Fundamentally, rqt bag provides a means to seek and navigate sen-
sor data in real-time, which can be visualized by rviz and rqt plot.
When the data is being replayed, the location of data that is currently
being replayed is indicated with the red playhead (in Fig. 2, it is lo-
cated around 0m45s).

3.2 Event Filter
We introduce an event filtering method for on-the-fly data manage-
ment and event-driven data inspection. Event filtering is a method for
identifying timepoints that a user is interested in, e.g., all timepoints
where door opening events occur. The extracted timepoints can later
be used for timeline navigation. For example, a user might be inter-
ested in replaying data around the timepoints when the door-opening
annotation data is set to true.

Fig. 3. Add Event Filter dialog box. Dialog box for creating an event filer.

We provide a programmatic approach to solve the event filtering
problem. In particular, we provide an interface for a user to write fil-
tering code and select an arbitrary topic as shown in Fig. 3. The user-
provided line of code will be used to extract timepoints from the user
selected topic. For example, if the user is interested in the timepoints
where the door-opening annotation data is set to true, they can first se-
lect the topic which has door event annotation information. Then they
can provide an anonymous python function that takes three variables
msg, t and prev val as inputs and returns a boolean value, which
will be used for filtering the data. Here is an example.

lambda msg, t, prev_val: msg.state == DOOR_OPENING

msg is a data point in the selected topic, t is a corresponding time-
point and prev val is an extra carried variable. msg.state is an
integer field of a data point object and DOOR OPENING is an integer
value for representing door-opening event.

The extracted timepoint using an event filter is a single moment
in time, not a time interval. Often, the user is interested in seeing
the sensor data around the timepoint associating with an event. We
provide an “Event Window Length (in sec)” section for the user to
define a time interval around event timepoints that they like to replay
using rqt bag diff.

In addition, the user can express more sophisticated filtering for-
mula by using “Advanced Event Filter” option as shown in Fig. 3.
Internally, our filtering implementation iterates the sensor data in in-
creasing time order. “Previous Value Update” expects an anonymous
python function that takes three variables msg, t and prev val as

inputs and returns any typed value. Once provided, “Previous Value
Update Formula” sets prev val variable independently from “For-
mula” in every iteration. Then the updated prev val is available in
both “Formula” and “Previous Value Update Formula”. Optionally,
the user can give initial value of prev val using the “Initial Value”
input line in Fig. 3.

Checking the “Use State Filter” makes the rqt bag diff focus on
states rather than events. By states, we mean the time interval between
two consecutive and distinctive events. Once the user checks “Use
State Filter”, the input for the “Event Window Length (in sec)” section
will be ignored and the time interval between two consecutive and
distinctive event will be used. For some analysis, replaying the data
based on the states is preferred to the events.

3.3 rqt bag diff

rqt bag diff (shown in Fig. 1) offers a event filter based navigation.
It allows a user to jump directly to one of the timepoints extracted
by a selected event filter. On top of the two timelines, there are an
event filter selector for selecting one of user created event filters, and
two event filter based navigation buttons for jumping to a previous and
next event timepoint.

Our tool also facilitates comparing two different timepoints. It is
difficult to compare multiple events that occur in different timepoints
using just a single timeline as in rqt bag. Our tool provides stacked
comparison of events as follows. First, it displays two copies of the
timeline that are stacked together. On each timeline, the timepoint ex-
tracted by a selected event filter is marked with the green static play-
head (WARNING: hard to see), and the user defined time interval is
highlighted in green on top of the timeline. In fact, the green playhead
is always located at the center of time interval highlighted with a green
color. The green bars from the two timelines are vertically aligned
whenever the user uses event-based navigation buttons. This behavior
was implemented to encourage the user to focus on the event time-
points from two different timelines and compare them. However, two
timelines can be moved and zoomed independently to provide more
flexibility to the user.

When a user click the play button, the rqt bag diff replays sensor
data from both timelines in a synchronized manner. This synchronized
playback helps a user to visualize data from two timelines in rviz and
rqt plot simultaneously. A user can display these data in layered or
side-by-side manner–by default, we provide layered configurations for
sensor data displayed in the simulated 3D environment and side-by-
side configurations for camera images and line-plots.

4 CASE STUDY

We investigated the example usage of rqt bag diff in the context of
building event detectors for multi-floor navigation. We were interested
in building two event detectors; 1) door opening and door closing event
detector and 2) elevator moving up and elevator moving down event
detector. We used sensor data collected from on-board microphone,
imu, laserscan, wifi and rgbd camera while the robot is traveling be-
tween multiple floors and riding elevators in the CSE building. The
total length of the logged data was about 9 minutes4.

To investigate possibility of building event detectors, we needed
to 1) estimate the sensor data distribution across the intra event class
instances and estimate rough difference between inter event class in-
stances and 2) identify which sensor is the most informative.

For building door opening and closing event detector, we first cre-
ated two event filters using following formulas:

lambda msg, t, prev_val: msg.state == DOOR_OPENING

lambda msg, t, prev_val: msg.state == DOOR_CLOSING

4the data is available at http://www.cs.washington.
edu/homes/mjyc/shared/cse512-final/test_data2_
rerecorded.bag

http://www.cs.washington.edu/homes/mjyc/shared/cse512-final/test_data2_rerecorded.bag
http://www.cs.washington.edu/homes/mjyc/shared/cse512-final/test_data2_rerecorded.bag
http://www.cs.washington.edu/homes/mjyc/shared/cse512-final/test_data2_rerecorded.bag


(a)

(b)

Fig. 4. Intra and inter class comparisons for elevator moving up and
down events. Three dimensional linear acceleration data (x,y,z) from
imu sensor is plotted using rqt plot. (a) Interclass comparisons: the top
plots are showing data from one instance of elevator moving up events
and the bottom plots are showing data from one instance of elevator
moving down events. (b) The top plots are showing data from one in-
stance of elevator moving up events and the bottom plots are showing
data from another instance of elevator moving up events.

There were total 24 annotated door opening and door closing event
(12 instances for each event class). To compare the inter class differ-
ences, we selected the door opening event filter from the top timeline
and selected the door closing event filter from the bottom timeline.
We then replayed the data and visually inspected rviz and rqt plot (as
shown in Fig. 1). We repeated same procedure for all door opening
and closing event pairs.

From this procedure, we identified laserscan and rgbd camera sen-
sor as the most informative sensors for detecting door opening and
closing events. The average value of laserscan data was increasing
near the door opening event and decreasing for the door closing event.
The average of brightness values from rgb vamer or the average of
depth values from depth camera had similar patterns for the door open-
ing and closing events.

We repeated the same procedures for building the eleva-
tor moving up and down detector. We found y-axis direction
(the axis perpendicular to the floor) linear acceleration from
imu sensor was the most informative. Fig. 4(a) shows the
comparison between one random instance from elevator mov-
ing up event and one random instance from elevator moving

down. We can see that /imu 1/linear acceleration/y
and /imu 2/linear acceleration/y topics have ex-
actly opposite patterns. Fig. 4(b) shows the comparison be-
tween one random instance from elevator moving up event
and another random instance from elevator moving down.
We can see that /imu 1/linear acceleration/y and
/imu 2/linear acceleration/y topics have very similar
patterns. The results matched with our expectations.

5 DISCUSSION AND FUTURE WORK

We are aware of the fact that our results do not include any user study.
However, since we built our tool, couple robotics students in our lab
has been using the tool and we made some informal observations from
them. All the students were be able to learn rqt bag diff quickly (<
10min) and use it without difficulty–we suspect that this is because
they are already familiar with ROS. However, some of them preferred
using rqt bag to using our tool. Those users mentioned that it was
because 1) some of rqt bag diff features were not fully compatible
with existing ROS tools and 2) they were already too familiar with
rqt bag. We also observed that nobody used the “Advanced Event Fil-
ter” feature. The “Advanced Event Filter” feature required the user to
understand how the tool works internally, which prevented them to use
it.

One important feature that was not fully supported by rqt bag diff
was support for time information stored in bag files. The rqt bag is
heavily depends on saved time information in bag files. In rqt bag diff,
time information from bag files is ignored and uses reasonable proxy
time information. This heck was used to play sensor data from two
different timepoints at the sametime in synchronized manner.

In future, we would like to run carefully designed user studies. We
want to know which added feature is helpful and measure how much
our tool is helping users to do sensor data comparison tasks. In terms
of new feature, we want to implement time warped playback to syn-
chronize playback of two unequal length event time intervals. In ad-
dition, we would like to one provide classifier analysis supports from
our tool. We believe the user must be able to analyze the data and build
classifier within ROS. We are considering how to visualize choice of
classifiers and its parameters, and its performances.

REFERENCES

[1] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In
Science & Engineering, 9(3):90–95, 2007.

[2] Apple iMoive. http://www.apple.com/mac/imovie/, 2014.
[Online; accessed 2-24-2014].

[3] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–.

[4] M. Kipp. Multimedia annotation, querying and analysis in anvil. Multi-
media information extraction, 19, 2010.

[5] MATLAB. version 8.02.0 (R2013b). The MathWorks Inc., Natick, Mas-
sachusetts, 2013.

[6] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2013. ISBN 3-
900051-07-0.

[7] M. Romero, J. Summet, J. Stasko, and G. Abowd. Viz-a-vis: Toward
visualizing video through computer vision. Visualization and Computer
Graphics, IEEE Transactions on, 14(6):1261–1268, 2008.

[8] ROS rosbag package. http://wiki.ros.org/rosbag, 2014.
[Online; accessed 2-24-2014].

[9] ROS rqtbag package. http://wiki.ros.org/rqt_bag, 2014.
[Online; accessed 2-24-2014].

[10] ROS rqtplot package. http://wiki.ros.org/rqt_plot, 2014.
[Online; accessed 2-24-2014].

[11] ROS rviz package. http://wiki.ros.org/rviz, 2014. [Online;
accessed 2-24-2014].

[12] H. Wickham. ggplot2: elegant graphics for data analysis. Springer New
York, 2009.

http://www.apple.com/mac/imovie/
http://wiki.ros.org/rosbag
http://wiki.ros.org/rqt_bag
http://wiki.ros.org/rqt_plot
http://wiki.ros.org/rviz

	Introduction
	Related Work
	Methods
	rqt_bag
	Event Filter
	rqt_bag_diff

	Case Study
	Discussion and Future Work

