
Voronoi Treemaps in D3

Peter Henry University of Washington
phenry@gmail.com

Paul Vines University of Washington
paul.l.vines@gmail.com

ABSTRACT
Voronoi treemaps are an alternative to traditional rectan-
gular treemaps for visualizing hierarchical data. Like rect-
angular treemaps, Voronoi treemaps represent hierarchical
data by dividing the canvas region into cells for each node
at the top of the hierarchy, and then further dividing each
of these cells for the children of those nodes. The organic
shapes created by the Voronoi treemap can make it easier
to distinguish sibling nodes from nodes in other branches
of the hierarchy. Voronoi treemaps can also be fit to non-
rectangular canvases, and are often more aesthetically pleas-
ing than rectangular treemaps. In this paper we present our
implementation of the current state-of-the-art of Voronoi
treemap generation in javascript for use with the D3 web
programming framework. We evaluate our contribution in
terms of computational speed against previous native impe-
mentations of Voronoi treemap generation.

1. INTRODUCTION
Treemaps are a category of visualizations used for displaying
hierarchical data (see Fig. 1 as an example). While node-
and-edge diagrams are often used for visualizing hierachical
structures, treemaps offer some significant advantages. Pri-
marily, treemaps are space-filling, and therefore allow each
node in a hierarchy to have more viewing area devoted to it
than in a node-and-edge diagram. This allows both larger hi-
erarchies to be visualized, as well as more detail to be shown
on each node, such as additional text, colors, or glyphs to
show attributes of the node.

The majority of treemap layouts used are variants of rect-
angular treemaps. These have the advantage of being rela-
tively fast to lay out, and in cases of limited scale produce
reasonably understandable treemaps. However, there are
three drawbacks to rectangular treemaps.

First, as hierarchies become deeper, the treemap cells can
become increasingly extreme in aspect ratio, resulting in
narrow rectangles more difficult to see than if their area

was distributed in a more square-like space. This problem
is mostly mitigated by various tweaks to the treemapping
algorithm to try to keep the aspect ratio of regions close to
one [2].

Second, the borders between different regions in the hier-
archy can become difficult to see. In particular, two cells
neighboring one another in the treemap but not siblings in
the hierarchy can appear to share a common edge delineat-
ing the same inner node as their parent, when this is in
fact not the case. Finally, rectangular treemap algorithms
only fill rectangular regions, which could be undesirable for
aesthetic or practical reasons.

Voronoi treemaps eliminate these problems. Firstly, Voronoi
treemap cells are arbitrary polygons, and as will be discussed
later, the generation algorithm results in generally low as-
pect ratio cells. Secondly, the fact that Voronoi treemap cells
are arbitrary polygons means edges between cells will fall at
any angle, rather than only vertical or horizontal, and thus
two neighboring cells will rarely have a continuous-looking
edge unless they are in fact siblings in the hierarchy and thus
share the edge of their parent node’s cell. Finally, Voronoi
treemaps can be produced for any arbitrary polygonal re-
gion, and so do not restrict the shape to be filled by the
treemap.

Multiple Voronoi treemap algorithms have been created in
recent years [2,5,6]. However, none are available for use in a
web framework. Our work has been to implement one of the
fastest algorithms for use in the D3 web framework [3]. De-
spite the optimizations employed by the algorithm creators,
generation of a Voronoi treemap is still a computationally
intensive task. Therefore, we have additionally written the
D3 module with features to try to allow Voronoi treemaps to
be used for web visualizations without causing a poor user
experience even on complex datasets.

The remainder of the paper is structured as follows: Sec-
tion 2 has a discussion of related work including a brief in-
troduction to weighted Voronoi diagrams and a discussion of
the algorithms created for Voronoi treemaps. Section 3 de-
scribes the implementation of our work in D3 and optimiza-
tions added for client-side web usability. Section 4 shows
the use of our framework on several datasets and an evalu-
ation of the computational burden of our system. Section 5
discusses the potential applications of our system. Section 6
concludes with proposals of future work to be done in this



Figure 1: Example of the same tree represented by a colored
node-and-edge diagram and as a Voronoi treemap.

space.

2. RELATED WORK
2.1 Voronoi Diagrams
Voronoi diagrams are a technique for dividing a region con-
taining sites into cells to satisfy the following condition:
given a distance function d(p, q) where p and q are points,
any point p is labeled as belonging to the site q that results
in the lowest distance, d(p, q). In this case to be labeled
means to be inside a bounding polygon formed for each
site. In the case of a simple euclidean distance function,
d(p, q) =

√
(dx2 + dy2) this results in a cell border being

equidistant between the two closest sites.

For Voronoi treemaps, two extensions are made to the basic
Voronoi diagram. First, sites are given initially random po-
sitions, a diagram is generated, and then sites are moved to
the centroidal positions in their cell and then the diagram is
re-generated. This is repeated until a relatively stable set of
positions is found [4]. The effect of this iterative process is
to create lower aspect ratio cells. Second, rather than using
a standard euclidean distance function the generation algo-
rithm uses a weighted distance function, where each site is
assigned a weight that corresponds to generating a larger or
smaller cell. This allows the sizes of cells to be adjusted to
reflect the relative size or number of children of a specific
node in the hierarchy being displayed.

After these extensions are made, the Voronoi treemap al-
gorithm proceeds to compute the Voronoi diagram for each
level of the hierarchy: it starts at the highest level, gen-
erates the Voronoi diagram of the first level of nodes, and
then recursively descends into each cell and generates the
Voronoi diagram for the children of that node using the cell
as the new bounding region. The computational burden of
this can be high; several different algorithms for computing
the Voronoi diagram have been developed and are briefly
summarized below.

2.2 Previous Approaches
Voronoi treemaps have been implemented previously [2]
using both additively weighted and geometrically weighted
Voronoi diagram algorithms. This initial system used the
iterative algorithm for creating centroidal Voronoi diagrams
described above. To create the weighted diagrams, however,
it used a sampling algorithm wherein points were sampled
in the space and distances to nearest sites calculated, to give
an approximation of the correct weighted Voronoi diagram.
This results in an algorithm on the order of O(n2) where
n is the number of sites. The benefit of this algorithm is
that it the sampling process is the bottleneck and is easily
parallelized to achieve linear speedups with additional CPU
cores.

This algorithm implementation was improved by Sud et al.
[6] by using GPU programming to significantly speedup com-
putation by parallelizing across graphics hardware. How-
ever, the algorithm remained O(n2) for the number of sites.
Further, this approach is not yet feasible for web program-
ming because consumer devices are not commonly equipped
with powerful graphics cards and do not all support the use
of the graphics card by a website.



Dataset Nodes Breadth Depth JS Time Java Time
Flare 251 10 4 3.913 1.588

A 178 7 5 3.112 1.160
B 130 3 5 2.765 1.063
C 73 5 3 1.277 0.946
D 584 8 3 8.623 2.124
E 110 10 2 1.733 1.067

Table 1: This shows the data for how the javascript and java
implementations performed on a set of hiearchical datasets.

The algorithm proposed by Nocaj & Brandes [5] offers a sig-
nificant asymptotic improvement on these previous designs.
Rather than a sampling-based approach, this implementa-
tion uses the algorithm for computing arbitrary-dimension
Power Diagrams proposed by Aurenhammer [1]. In this
approach the 2D points representing sites are lifted into 3-
dimensional dual space based on their weights. The con-
vex hull made by these 3D points is then computed, and
projected back down to 2D to produce the Voronoi dia-
gram. This method is on the order of O(n logn) and so
can provide a significant speedup for generating treemaps of
larger datasets. A second benefit is that by computing the
Power Diagram analytically, the resulting Voronoi treemap
is resolution-independent.

3. METHODS
The core computational components of our implementation
were adapted from a Java implementation1 of the Nocaj &
Brandes algorithm [5] using a lift into 3-dimensions followed
by computation of the convex hull and projection back into
2-dimensions to create the Voronoi diagram. As with other
implementations, we use Lloyd’s algorithm to iteratively ad-
just the site locations to be the centroids of their cells and
then adjust the weights of the sites to fit the area of each
cell to within an error threshold.

4. RESULTS
We first present a visual comparison between a standard
rectangular treemap and the same data visualized using our
system (Figure 2). Notice that the hierarchical structure is
more readily apparent in the Voronoi treemap.

To evaluate our implementation we used a 251 node 4-level
example hierarchical dataset used for the example imple-
mentation of the rectangular treemap in D32 and five other
randomly generated hierarchical datasets of varying depth
and breadth to test the limits of the dataset sizes our system
could handle. We timed the time required to fully compute
the Voronoi treemaps of these datasets, using a limit of 100
iterations which generally yielded error rates below 1% be-
tween optimal cell areas and generated cell areas. We addi-
tionally ran these examples through a Java implementation
of the same algorithm by Nocaj & Brandes to compare speed
differences between implementations. All tests were run on
a Macbook Air 2012 running an Inte Core i5 1.8 GHz pro-
cessor with 4 GB of 1600 MHz DDR3 RAM. The javascript
was run in Google Chrome.

1https://github.com/ArlindNocaj/
Voronoi-Treemap-Library
2http://bl.ocks.org/mbostock/4063582

Figure 3: A chart showing the computation time required
relative to the number of nodes in the dataset.

As can be seen in 3 the javascript implementation was con-
sistantly slower, as was to be expected since javascript is typ-
ically a slower language and was being run within a browser.
However, the difference is well within an order of magnitude,
and quite insignificant for the smaller datasets.

Of course, our javascript implementation is also meant to be
used on websites, which are much more sensitive to latency
than native applications. Even given this, the performance
on the first four datasets is within reasonable limits for users
to wait for a page to load.

In addition to investigating the computational aspects of
our Voronoi treemap algorithm we also investigated a vari-
ety of display aspects that could be utilized to emphasize
the hierarchies in a Voronoi treemap (see Fig. 4. These
include border thickness, depth-based color, and category-
based color, the latter is also shown in Fig. 2a for a rectan-
gular treemap. An analysis of these types of design choices
for Voronoi treemaps has been completely lacking in pre-
vious publications. Unfortunately in this case we did not
have the time to conduct a formal study of these types of
design decisions and their impact on the understandability
of Voronoi treemaps.

5. DISCUSSION
Our system represents the first javascript implementation
of Voronoi treemaps and the first implementation meant for
interactivity. Currently the computational burden means
that utilizing Voronoi treemaps for very large hierarchies is
not practical, particularly on the web. Fortunately, many
treemap applications can be easily restricted in depth with-
out losing significant usefulness. Even with the relatively
small datasets used for the valuation examples of our system
the deeper nodes could become quite small; small enough
that a user could well prefer the ability to interactively zoom
in on a region to see deeper levels of hierarchy than stay at
a constant high-level view. We believe these types of inter-
active capabilities allows Voronoi treemaps to remain useful
even for larger datasets that cannot realistically be fully ren-
dered in real-time for a user.



(a) D3 Standard Treemap (b) Our Voronoi Treemap

Figure 2: A comparison of standard and Voronoi treemaps on the same dataset.

(a) Uniform stroke width, no color (b) Uniform stroke width, linear color (c) Uniform stroke width, color by name

(d) Variable stroke width, no color (e) Variable stroke width, linear color (f) Variable stroke width, color by name

Figure 4: A comparison of the visual effect of indicating hierarchical structure with both stroke width and color. The
hierarchical structure is clearest when both variable stroke width and colors determined by node name are utilized (f).



6. FUTURE WORK
Our implementation covers the core of the Voronoi treemap
with support in D3 that was already covered by a previous
Java implementation plus the data-driven interface features
of a D3 layout. However, additional features could be added,
particularly to facilitate more interactivity to make up for
the restrictions imposed by the computational complexity of
Voronoi treemaps.

One of these features would be ragged hierarchy trimming,
where some branches of the hierarchy would be trimmed
more aggressively than others in order to speed up com-
putation by eliminating more complex deep branches but
keep deeper levels that are relatively simple. Another fea-
ture would be an integrated node select/zoom feature to
make it easier for a programmer to create a Voronoi treemap
with node zooming and unzooming without re-performing
Voronoi computations for nodes that had already been gen-
erated (such as when unzooming back out to higher levels
of hierarchy). Both of these could help programmers make
greater dynamic use of Voronoi treemaps, which is probably
the most practical use case currently unless the total dataset
is no more than a few hundred nodes.

Finally, generation of the Voronoi treemap require gener-
ation of Voronoi diagrams for each inner-node in the hi-
erarchy, which can be done completely independently for
each inner-node. Therefore, it remains a parallelizable task
that could potentially be performed on a user’s GPU. As
stated in earlier, WebGL and advanced graphics cards can-
not realistically be assumed to be common on the average
user’s computer yet, but that may change in the near future.
Therefore, extending this algorithm to run partially in We-
bGL could provide an orders-of-magnitude boost in speed
and make much larger interactive Voronoi treemaps feasible
as a website feature.

7. ACKNOWLEDGMENTS
We would like to acknowledge our use of the D3 web frame-
work for use in helping create the images used for this paper
and intend to contribute our project back to D3 for others
to utilize.

8. REFERENCES
[1] F. Aurenhammer. Power diagrams: properties,

algorithms, and applications. SIAM Journal on
Computing, 16(1), 1987.

[2] Michael Balzer and Oliver Deussen. Voronoi treemaps.
Information Visualization, IEEE Symposium on, 0:7,
2005.

[3] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
D3: Data-Driven Documents. IEEE transactions on
visualization and computer graphics, 17(12):2301–9,
December 2011.

[4] Stuart Lloyd. Least squares quantization in pcm.
Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[5] Arlind Nocaj and Ulrik Brandes. Computing voronoi
treemaps: Faster, simpler, and resolution-independent.
EuroVis, 31(3), 2012.

[6] Avneesh Sud, Danyel Fisher, and Huai-Ping Lee. Fast
dynamic voronoi treemaps. Voronoi Diagrams in

Science and Engineering (ISVD), 2010 International
Symposium on, pages 85–94, 2010.


