Visualization of Lattice Structure

Shengjie Wang
wangsj@uw.edu

ABSTRACT

Lattice is a special form of graph with a start node and a ter-
minal node, and data are encoded on the paths from the start
to the terminal. The key feature of lattice is common edges,
which are the edges shared by multiple data-encoding paths.
Lattice is widely used in the fields of speech recognition,
natural language processing and bioinformatics, as common
edges can be applied to compress data, to speed-up algo-
rithms, and to discover common structures within the data.
In this paper, we focus on visualization of the lattice struc-
ture, with emphasis on the common edges. In particular,
we aim to build a system, which takes any lattice as input,
displays the lattice structure effectively, and supports vari-
ous interactions for users to either explore or edit the lattice.
With such system, we wish to gain some intuition about how
to build the optimal lattice from raw data, which is still an
unsolved problem.

Author Keywords
Visualization, Lattice, Graph, Interaction.

ACM Classification Keywords
Visualization [: Graph Visualization and Interaction]

INTRODUCTION

Lattice is a special form of graph with a start node and a
terminal node, and data are encoded on the paths from the
start to the terminal. The key feature of lattice is common
edges, which are the edges shared by multiple data-encoding
paths.

Figure 1 shows an example of a simple lattice, where we
encode the data of two words, namely, “seattle” and “sea-
hawk”, into the paths from the start node “S” to the end node
“T”. The shared edge, which is colored in red, resembles the

’9

shared prefix of the two words: “sea”.
Please note that lattice is different from prefix/suffix tree

structure, as such common edges can appear anywhere on
a path, not necessarily in the front part (prefix) or in the end

Submitted for review to CHI 2009.

ttle
sea

hawk

Figure 1. Lattice Example — a simple lattice, which encodes the data of
two words: ‘“seattle” and “seahawk”. The prefix “sea” is a common
edge. “S” denotes the start node and “T” denotes the end node.

part (suffix). In general, lattice is a more generalized struc-
ture to capture the common parts in the data.

Common edges are of strong interests for the following rea-
sons.

1. Common edges indicate the common structures shared by
the data.

2. Common edges compress the data, as we encode the du-
plicated information only once.

3. Common edges can be applied to speeding-up algorithms
in a dynamic programming manner, as we do not need to
apply our algorithms same edge multiple times.

For the above three characteristics of common edges, lattice
is a widely-used structure in the fields of speech recogni-
tion, natural language processing, and bioinformatics. It is
so strong a structure that we believe visualization of lattice
can be extremely useful, both for better understanding of the
lattice, and for applications in the fields mentioned above.

In this paper, we will focus on visualization of lattice struc-
ture, with emphasis on the common edges. In particular,
we aim to build a system, which takes any lattice as input,
displays the lattice structure effectively, and supports vari-
ous interactions for users to either explore or edit the lattice.
With such system, we wish to gain some intuition about how
to build the optimal lattice from raw data, which is still an
unsolved problem.

However, we note that such task is hard to accomplish. Vi-
sualization of lattice structure is a challenging problem for
the following reasons.

1. Visualization of graph structure in general is a hard prob-
lem. It has been a research topic for a long time about how

to construct a neat layout of the structures, how to display
the information, and how to allow users to interact with
the visualization.

2. Lattice in particular has important properties, such as the
common edges, and data on the paths, that have not been
addressed by previous graph visualization methods.

3. We need to support various operations for users to edit
the lattice structure. To build such interface, which allows
intuitive interactions to change the lattice to any possible
configuration is challenging.

In this paper, we aim to overcome the above challenges. As
you can see in details in the latter part of the paper, we adopt
a force-directed layout to visualize the graph structure, and
use various visual encoding techniques to display the com-
mon edges and data on the paths. We also design four major
operations, which allow users to change the lattice structure
freely and intuitively.

In the rest of the paper, we will 1) discuss the related work
about graph visualization; 2) introduce our methods to vi-
sualize lattice structure; 3) our results and working system
for lattice visualization; 4) discussions about such system;
5) conclusion and future works.

RELATED WORK

In general, lattice visualization involves the following prob-
lems: 1) layout and display of graph structure in general; 2)
display graph edges effectively; 3) large scale graph visual-
ization;

Force directed layout is a widely-used layout for graph vi-
sualization [2]. Such approach addresses the graph layout
problem as a physical simulation of strings, which connect
pairs of nodes in the graph. For our approach about lattice
visualization, we use such technique to do the graph layout.
However, to allow better exploration and flexibility, we also
allow users to pin the nodes, so that they are not affected by
the simulation anymore.

Holten et al. [3] proposed an edge bundling mechanism to
visualize graphs and address the visual clutter. Generally,
they applied force-directed simulation on the edges of graphs
to make them attracting/distracting each other. Such work is
related to ours, as we need to deal with the overwhelming
number of edges. Whereas our project is different, as we
already have the common edges, and to highlight those edges
are of strong interests of our project.

Abello et al. [1] described a large-scale graph visualiza-
tion system without extra hierarchical information about the
graph. Their approach included first building a hierarchical
tree to abstract the input graph, and then applying graph-
clustering methods on the hierarchical tree. In such a man-
ner, the large-scale graph would be displayed as clusters, and
users could drill down each cluster to see the details. Lattice
can be potentially huge, yet we have to deal the problem in
a different way as the target information are stored on the
paths, and clustering on graph nodes will not be meaningful.

Rather than that, we decide to adapt to the common edges,
which can be viewed as clutter on edges, and let users to
drill down to a subgraph of paths, which share the selected
common edge.

METHODS

In this section, we will explain the techniques exploited to
visualize the lattice structure. In general, we tackle the vi-
sualization problem in three perspectives: graph layout, data
exploration, and interactions for structure change.

Graph Layout

Lattice is a special form of graph structure. To display the
graph structure neatly on a 2d canvas, we adopt the force-
directed layout of graph. Such approach addresses the graph
layout problem as a physical simulation of strings connect-
ing particles with charges, where strings are the edges and
particles are the nodes. To avoid collisions on the nodes, we
assign the same charge on the nodes to make them compel
each other. To avoid nodes being too apart, we assign the
length of strings to be the length of the data encoded. There-
fore, users can have a direct sense about how much data is
encoded on each other by just observing its length. Such vi-
sual encoding also contributes to the judgment about the im-
portance of a common edge. Intuitively, a longer common
edge is generally more informative. We note that as the ac-
tual length of each edge is determined by the simulation, the
length is not expected to be exactly proportional to the length
of the data. However, for most of the cases, the more-data-
encoding edges are longer than less-data-encoding ones.

Every lattice contains a start node and a terminal node, and
we decide to exclude the two nodes from the force simula-
tion in order to make them more observable. In our default
layout, we choose to put the start node on the top left cor-
ner and the terminal one on the bottom right corner. We
select such placement rather than the horizontal/vertical one
to gain better space usage. In addition, we allow users to
adjust the placement themselves if they think other layouts
are more intuitive. For nodes other than the start/terminal
node, users can exclude them out of the simulation by drag-
ging and slowly releasing. We provide such functionality as
for some cases, the simulation does not yield clean results,
so users can adjust the layout for better views.

Force-directed layout handles the layouts of nodes on the
graph, and here we discuss how we decide the positions of
edges. Lattice is not a simple graph in the sense that there
can be multiple edges with the same start node (local start
node, not the global one for the entire lattice) and end node.
Therefore, straight edges only would not satisfy our require-
ment. We tackle the problem by drawing every edge as
part of a circle, and we adjust the curvature of each edge
by changing the radius of the circle. For every two nodes,
we have a list of edges connecting them, and we index the
edges arbitrarily. The smaller-indexed edges will have a cir-
cle with larger radius, and vice versa. Thus, we expect to
see the smaller-indexed edges to be closer to a straight line,
and the larger ones to be closer to a semicircle (we force
it not to go over 180 degrees). Moreover, we also change

the direction of the curvature every other edge. Suppose we
have two nodes on a horizontal line, the edges with odd in-
dices will be curved towards top and the even-indexed edges
will be curved towards the bottom. As different lattices may
have significantly different number of edges, it is hard to de-
cided one maximum radius for all the lattices. Therefore, we
also provide a slider for use to choose the maximum radius,
which on the observing side, changes the curvature of all the
edges.

The key feature of lattice is common edge. To make such
edges obvious, we encode the width of each edge propor-
tional to the number of paths through such edge. In another
word, the “fatter” the edge, the more it is shared in the data.

Data Exploration

Lattice encodes data on paths from the start node to the ter-
minal node. Along with the layout of the graph, we display
the data encoded on each edge as well. The position to show
the data is calculated in a similar manner as the position of
each edge. Particularly, we find the point on the part of the
circle, whose projection will be on the middle of the straight
line connecting two nodes.

To show the entire data piece on any path, we design some
interactive operations. Users can query about certain edge
to see all the data pieces sharing such edge by moving the
mouse over. For the feedback, we highlight all the paths on
the graph, as well as displaying the detailed data information
on a side window.

For data pieces shown on the side window, users can also
move mouse over to query about the corresponding path,
which conveys such data. Accordingly, the corresponding
path will be highlighted on the graph layout.

Furthermore, we allow users to click on certain edges to drill
down to the subgraph, which consists of only the paths shar-
ing the clicked edge. We support such functionality as a way
to deal with lattice of huge size. In such a way, users can
filter out the rest of the graph which is not of interest, and
focus on the subgraph with certain selected data.

All the interactions described above are implemented as a
depth-first search algorithm. For each edge, we first spec-
ify the indices of paths which share such edge. Upon se-
lection, we start from the start node, and search for all the
edges which contain the path indices of the selected edge. A
mapping from edge to data is also calculated as DFS goes
through, for user to query path from data pieces in the side
window.

Structure Change

As the target of the lattice visualization, we wish to gain in-
tuition about how to construct the optimal lattice from raw
data. Therefore, we support several structure change opera-
tions, which can change the lattice to any other one without
changing the encoding data instances.

1. Node Insertion:

We allow users to insert a new node to an existing edge,
which also separates the information into two parts. Users
can perform such operation by moving mouse horizon-
tally around an edge, and releasing it at the desired posi-
tion to add a new node. The desired position, which sep-
arates the encoding data, is shown in the side window for
data display. We support such operation, as potentially the
separated edges may have exactly the same data as some
other edges. Insertion of a new node allows users to find
those edges, and perform further processing on the sepa-
rated edges.

2. Node Deletion:

Users can remove an existing node. As a result, all the
edges going into the node, and edges going out of the
node will be reconstructed into longer edges with out the
deleted node as a middle point. Such operation is use-
ful when there are certain dummy nodes, which do not
provide useful information. The dummy nodes can result
from some other operations, which construct new edges
and nodes. Moreover, node deletion can construct longer
edges, which can potentially have the same content as
other edges.

3. Node/Edge Merging:

Users can merge two nodes or multiple edges together.
Such operation is desired when users find certain edges
with the same data encoded, but start/end on different nodes.
In such a case, user can merge the nodes first to make
the edges have same start/end nodes, and then continue to
merge the edges into a common edge. By doing so, we
are constructing more common edges, which makes the
lattice a more compressed structure.

4. Edge Separation:

Users can also separate a common edges into multiple
edges. Such operation is meaningful as the existing lat-
tice may have some common edges which are not optimal.
Particularly, one or more of those edges after separation
can exist in some longer data instance, which potentially
share the same content with other edges. Moreover, edge
separation also allows users to get a more detailed view of
the lattice structure, by showing exactly how many paths
there are sharing the separated edge.

We also record the history of the structure changes, and al-
low users to go back to history to undo the operations. To
save the space, only the structural information (which nodes
/edges are active) is saved in the history, while we use the
same objects of nodes and edges through out the operations.

To make the above operations manageable, we create a tool
bar of buttons designated for the operations. Buttons are
enabled only when the correct inputs are selected. For ex-
ample, if user selects a node, no edge operation is possible.

RESULTS

In this section, we will mainly show our visualization results,
as well as a walk-through about how to utilize our system to
build more compressed lattice structure.

To demonstrate the effectiveness of our system, we will use
two lattices. The first one is a simple lattice, which encode
four English sentences. The second one is a lattice of peptide
sequences. We call the first lattice as word lattice, and the
second one as peptide lattice for the rest of our discussion.
Though we take these two lattices as examples, please note
that our system is capable of handling any input lattice.

Results on Graph Layout and Data Exploration

[

contents here

lattice stats:

num nodes: 5
num edges: 8
ori

Figure 2. Word Lattice Visualization — our system visualizing a lattice
with four sentences.

In Figure 2, we show a picture of our visualization of the
sentence lattice. The major middle part of the visualization
is the lattice structure. The top left part is a tool bar with but-
tons for various operations defined in the previous session.
On the right side, we have two side windows. The top one
is the content window, which displays information about the
data information. The bottom window is the statistics win-
dow, which shows the statistical information about the cur-
rent lattice. Such information includes measurements such
as the number of nodes and edges, and the rate of compres-
sion. The information in the statistics window is updates as
we interact with the lattice.

As discussed in the previous session, we apply a force-directed

layout, and from Figure 2, we see a clear layout of nodes on
the canvas. Common edges are also appropriately displayed,

as we clearly see that the edge “i” has a larger width than
other edges.

Figure 3. Word Lattice Visualization — our system visualizing a lattice
with four sentences. Mouse is moved to “have” edge in the left one.
Mouse is moved to the data “i have a dream” in the right one.

In Figure 3, we show how users explore the encoded data
on our system. In the left graph, user moves mouse over to
edge “have”, and all the paths through such edge get high-
lighted in orange. The corresponding data pieces also get

displayed in the content window with the selected word col-
ored in red. In the right graph, user moves mouse over the
displayed data: “i have a dream”, and the corresponding path
gets highlighted in the graph structure.

Figure 4. Peptide Lattice Visualization — our system visualizing the pep-
tide lattice. The top left graph is the default layout. The top right one is
the layout with decreased curvature. The bottom left one is constructed
by excluding certain nodes from the force-directed layout. The bottom
right one is the subgraph obtained by drilling down on certain common
edge.

Next, we show how to use the layout interactions provided
by our system to clean up a messy input lattice. As shown in
Figure 4, we have four visualizations of the peptide lattice.
The top left one is the default layout of the lattice, where
lots of edges are too curved and get cluttered together. We
first change the curvature of the graph, which yields out the
visualization in the top right. We then modify the layout of
nodes, which gives the bottom left one. In the end, we select
certain common edge and drill down to a subgraph.

Obviously, by applying the above three operations supported
by our system, users can get a much cleaner view of the orig-
inal lattice.

Results on Structure Change

Here we show a walk-through of the operations supported to
demonstrate the powerfulness of the editing functionalities
of our system. In particular, we start with the word lattice,
and we build a more compressed lattice in the end via four
simple operations.

Firstly, we insert a node on the “have” edge between the let-
ter “a” and “v”, as shown in the top left picture from Figure
5. We do the same thing to the “hate” edge, where the new
node is inserted between letter “a” and “t”. Now we have
two edges with the same contents, namely “ha”. By apply-
ing node merging, we can merge the two end nodes of “ha”
(top right of Figure 5). Obviously, we can merge the two
“ha”s into a new common edge now (bottom left of Figure

5), and we can delete the node separating “i” and “ha” to get
a longer common edge “iha” (bottom right of Figure 5).

By performing the above operations, we increase the com-

Figure 5. Word Lattice Structure Change — using our system to change
the lattice structure to gain a more compressed lattice.

pression ratio 0.289 of the original lattice to 0.342 of the new
lattice.

Result on Running Time

The operations supported by our system are all quite effi-
cient and react to people in real time. As shown in Table 1,
running time of all the supported operations is around 10 ms.

lattice | insertn. | deln. | merge n. | merge e. | separate e.
word 5.20 6.40 6.00 7.20 5.20
peptide 5.40 9.20 7.60 14.20 5.60

Table 1. Running time in ms for supported operations — node insertion,
node deletion, node merging, edge merging, and edge separation.

DISCUSSION
In this section, we will discuss the new insights and practices
that our system has brought.

Lattice Construction

To best of our knowledge, no prior work on visualizing a
lattice structure has been done. Our system is the first vi-
sualization of lattice, which also allows users to explore the
encoded data as well as modifying the existing lattice struc-
ture to gain a better lattice.

Though no solid user evaluations have been conducted, from
our experience of using the system, it is much more efficient
for us to find some common structures to make a more com-
pressed lattice using our visualization system, than finding
those structures from the texts, which represent the graph in
an adjacency list. We believe that such experience transfers
to more general cases and to more users, as for our system,
it is very easy for users to try certain operations, see the re-
sults visually and immediately, and undo the operations if
necessary, while for the texts search, users suffer a lot from
transferring from textual information to structural informa-
tion.

Meanwhile, as we design the operations for modifying the
lattice, we also make an important observation that for lat-
tices representing the same data, we can always transform
one lattice to another by using the operations defined in our
system: node insertion, node deletion, node merging, edge
merging and edge separation. Therefore, it is possible to
search for the optimal lattice by iteratively applying these
operations to the existing lattice, which might contribute a
new algorithm for lattice construction.

Graph Clustering on Edges

Lattices can be potentially huge graphs, depending on the
size of data encoded. Graph clustering is a classic method
to deal with visualizing graphs of large scale: we display
clusters of subgraphs on the top level, and let users to drill
down each cluster to see more details.

Most clustering methods are bounded to nodes. However,
for the lattice case, information is stored on the edges, and
such information gets lost if we do the node clustering.

In our system, we get around such problem by allowing user
to drill down certain paths and filter out the rest of the graph
which has no intersection with the selected paths. Note that
we do not solve the large-scale problem entirely, as on the
top level, we still need to show all the nodes and edges.
However, we gain some insights about how to perform the
graph clustering on edges.

Intuitively, we can cluster based on the paths that users may
click. Specifically, for every edge going out of the start node,
we can group them according to the paths. Suppose we let
the path to extend to the terminal node, therefore on the top
level, we will only have the start node and terminal node, and
a limited amount of edge clusters connecting them. More-
over, we do not need to extend to the terminal node, and
we can stop on certain node, and start a new clustering from
there on, so that we preserve some structural information
on the top level. Inside each cluster, we can also apply the
clustering technique recursively, so that we get a clean visu-
alization on every level.

Automatic/Manual Layout

Lattice structure can be so complex that the force-directed
layout method is not able to yield a clean view of the struc-
ture. As shown in the result session about the peptide lat-
tice, the default layout contains some visual clutters. To
get around with such problem, we decide to give users more
flexibility of changing the layout according to their own in-
terests, rather than fully relying on the automatic layout al-
gorithm (as shown in the result session, users can get clear
view of the peptide lattice through some simple operations).

For automatic/manual approach, It is not clear about which
one would be better to tackle the layout problem. Ideally, the
system should support an automatic layout, which should be
as visually clean as possible, as well as some freedom to
manage the layout for users. However, we also note that as
we put more constraints for the automatic approach, which
are often required if we want more clear views, we poten-

tially lose more freedom on the manual approach.

Solid studies on users might be necessary on this point to
evaluate how much effort should we put on both sides, so
that users feel most comfortable about the layout. We also
note that there are a few possible improvements for the cur-
rent layout of lattice: 1) the edges should be compelling each
other so that we can see each path clearly; 2) the shape of
each edge is chosen to be a part of semicircle, while some
other shapes may utilize the space better, such as bezier curves.

CONCLUSION AND FUTURE WORK

In this paper, we focus on developing a visualization sys-
tem for the lattice structure, which takes any lattice as in-
put, displays the structure information effectively, and al-
lows users to modify the structure for a better lattice. We
design lots of layout, visual encoding and interaction tech-
niques for users to 1) get a clean view of the structure, 2) ob-
serve the common edges easily, 3) query data/structure from
structure/data, and 4) change structure intuitively.

For future work, we expect the following improvements of
our system:

1. Better layout of the edges, so that then chances that edges
overlay each other are smaller.

2. Support graph clustering, especially the edge clustering
technique proposed in the discussion section, so that we
can display lattices of large scales.

3. Support more structure change operations and polish the
existing operations more user-friendly.

REFERENCES

1. J. Abello, F. van Ham, and N. Krishnan. Ask-graphview:
A large scale graph visualization system. IEEE Trans.
Vis. Comput. Graph., 12(5):669-676, 2006.

2. T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Softw., Pract.
Exper,21(11):1129-1164, 1991.

3. D. Holten and J. J. van Wijk. Force-directed edge
bundling for graph visualization. In Proceedings of the
11th Eurographics / IEEE - VGTC Conference on
Visualization, EuroVis’09, pages 983-998, Aire-la-Ville,
Switzerland, Switzerland, 2009. Eurographics
Association.

	Introduction
	Related Work
	Methods
	Graph Layout
	Data Exploration
	Structure Change

	Results
	Results on Graph Layout and Data Exploration
	Results on Structure Change
	Result on Running Time

	Discussion
	Lattice Construction
	Graph Clustering on Edges
	Automatic/Manual Layout

	Conclusion and Future Work
	REFERENCES

